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1

1 Introduction 

1.1 Programmatic Data of the Dynamic Reconfiguration and Interoperation 
in Infospace Communities Project 

The Dynamic Reconfiguration and Interoperation in Infospace Communities (DynRIIC) project 
ran from September 22, 2005 through November 21, 2007 under the AFRL/RISE Infospace 
Concept Exploration and Development (ICED) program. BBN Technologies was the Prime 
Contractor, with Dr. Joseph P. Loyall as the Principal Investigator. 

The first part of the DynRIIC project ran from September 22, 2005 through October 2, 2006 
and concentrated on architecture and prototype development for QoS management capabilities 
for dynamic information spaces.  

The second part of the project commenced on November 22, 2006 as an Engineering Change 
Proposal (ECP) to our existing contract and ran until November 21, 2007. This second part of 
DynRIIC concentrated on research, development, and evaluation of QoS allocation algorithms 
for dynamic, interoperating information spaces. 

1.2 Goals of the project 

The ICED program [10] included a focus area of Dynamic Systems Interoperability, to develop 
concepts for the integration and interoperation of information in dynamically changing 
Communities of Interest (COIs) [27]. This focus area includes the goals of designing and 
developing concepts, interfaces, and technologies for the following (illustrated in Figure 1): 

 
• Dynamic integration and reconfiguration when an asset enters a COI, leaves a COI, and 

moves between COIs. 
• Interoperation of assets within a COI – exchange of information between assets within a 

COI. 
• Interoperation/Sharing of assets between COIs – sharing of assets between COIs in a 

Community of Action (COA). 
 

This dynamic system interoperability must support environments that 

Dynamic Integration and 
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Interoperation of Assets
within a COI

Interoperation between COIs
within a COA

COI 1 COI 2

COI
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Subscribe
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Figure 1: The three primary goals of Dynamic Systems Interoperability 
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• Change dynamically in terms of a system’s mission; the number of participants in the 

mission; the role each participant plays in, and its relative importance to, the mission; 
and the available resources. 

• Potentially have intermittent connectivity. 
• Necessitate information exchange to satisfy mission critical operations. 

 
The concept of information spaces has emerged to provide support for the information 

exchange, brokering, and shared understanding needed by COIs [12]. As information spaces 
support more and more COIs with time sensitive missions, unfolding situations, and dynamic 
environments, it is critical to deliver information in real-time with sufficient quality to enable 
real-time decision making and action. Information delivered too late or with the wrong 
resolution, form, or precision is insufficient for the user to perform his role in a warfighting 
scenario. This motivates the need for a quality of service (QoS) management capability that can 
support the dynamic interoperability and real-time requirements of network-centric warfare. In 
order to be effective, this QoS management capability must work alongside and in conjunction 
with existing information management systems (IMSs) (as illustrated in Figure 2) to manage the 
production, delivery, and consumption of information within available resources, mediate 
competing demands for resources, and adjust to dynamic conditions. 

An information space QoS management capability must support dynamic resource and 
information management and reconfiguration as COIs and the makeup of COIs change, in 
service of critical mission requirements. While providing this service, an infospace QoS 
management capability should also hide the underlying heterogeneity of the raw resources and 
communication protocols provided by different platforms. 

The main goals of the DynRIIC project were to define and develop concepts for QoS 
management in dynamic information spaces in the areas of QoS architecture and design and 
algorithms for QoS management. 

QoS architecture and design – We designed and developed concepts, interfaces, and 
technologies for dynamic QoS integration and interoperation, at the information space, client, 
and resource levels. We defined and developed a QoS Management System (QMS) that operates 

COI

Information 
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System
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Services)
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System
(Resource mgmt

and control)
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Figure 2: Introducing a QoS management capability alongside the information management 
capability in a COI 



 
 
 

  

 
 
 

3

alongside the IMS as illustrated in Figure 2 and a set of interfaces for interoperation between the 
QMS and various IMSs and publication/subscription (pub/sub) services. The interfaces support 
(1) dynamic integration – assets can unplug from the IMS and QMS of a COI and plug into the 
IMS and QMS of another COI; (2) Interoperation of assets within a COI using the IMS and QMS 
of the COI and (3) Interoperation of assets between COIs within a COA utilizing the IMS and 
QMS of each of the two COIs, as illustrated in Figure 3.  

QoS algorithms – We investigated and designed QoS allocation algorithms that consider the 
complex system dynamics of information spaces, are efficient enough to be used in real-time 
QoS management, and are scalable to the sizes of envisioned information spaces. This class of 
algorithms is NP-hard, partially because of the following characteristics: 

 
• There are complex system dynamics among the QoS needs within an information space. 

That is, how we allocate one resource can impact the demand positively or negatively for 
other resources.  

• There may not be any direct correlation between how important an application is and the 
amount of resources it needs. 

• The resource usage of QoS levels is not monotonically increasing or decreasing. That is, 
a higher QoS level does not imply more resource usage than a lower QoS level and, in 
fact, might use more of some resources and fewer of others. 

• Resource bottlenecks can change dynamically. That is, addressing a bottleneck caused 
by a highly constrained resource can result in a bottleneck in another resource. 

1.3 Background 

The work in this project builds upon the emerging concepts underlying the Joint Battlespace 
Infosphere [4], including information spaces, communities of interest, and related concepts. This 
section provides definitions and background information for these concepts as assumed and used 
in the execution of this project. 

A Community of Interest (COI) is a collaborative group of users or assets who must exchange 
information in pursuit of a set of shared goals, interests, missions, or business processes. The 

Shared Resources
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Figure 3: Interoperation of assets between COIs within a COA 
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COI must therefore have a shared vocabulary for the information its members exchange and a 
shared information exchange mechanism. 

An information space (infospace) is the cyberspace equivalent of a COI. An information space 
consists of the information management system (IMS) providing information brokering and 
dissemination; the shared information dictionary understood by users and assets in a COI; 
interfaces and mechanisms providing access to, and storage of, information; and a set of clients, 
software processes representing the users and assets in a COI. 

A Community of Action (COA) is a composition of multiple, cooperating COIs. COAs are 
supported by composed, or federated, information spaces. 

1.4 Summary of Major Results 

Under the DynRIIC project, we produced results in two primary areas of QoS management for 
information spaces: architecture and algorithms. In the architecture area, we conceived, 
designed, and prototyped a multi-layered QoS management architecture suitable for information 
spaces. The multi-layered QoS management system works alongside the information manager in 
an information space and assigns QoS levels and resource allocations, produces and enforces 
QoS policies, and actuates QoS controls, including resource controls and information shaping. 

In the algorithms area, we developed several QoS allocation algorithms that work with the 
QoS management system, including resource and QoS allocation algorithms for single and 
multiple information spaces. We evaluated the algorithms indicating the relative merits and use 
of these algorithms in various scenarios, and prototyped some of the algorithms in the QoS 
decision maker components of the QoS management system. 

While we did not concentrate on other areas of QoS management, such as QoS policy, QoS 
mechanisms, and the capture of QoS requirements, we developed prototype components in these 
areas. This was, in part, to have a full set of components necessary to evaluate and demonstrate 
our QoS management results and to establish foundational concepts upon which further work in 
these areas could be based. 

1.5 Organization of This Report 

This report is organized into nine main sections. 
This section, Section 1, provides background and introduction for the DynRIIC project, 

including programmatic data, the goals of the project, and a summary of major results. 
Section 2 presents the architecture we developed for a QoS management system for 

information spaces. 
Section 3 describes the first prototype QMS system that we developed. 
Section 4 describes a set of QoS management algorithms that we developed under the 

DynRIIC project. 
Section 5 presents the results of a set of evaluations and experiments that we conducted to 

determine the execution time and effectiveness of the QoS management algorithms presented in 
Section 4. 
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Section 6 describes the second main prototype software that we developed under this project, 
an enhanced version of the QoS management decision maker that utilizes the algorithms 
described in Section 4. 

Section 0 describes three of the main demonstrations that we conducted of the software 
developed under the DynRIIC project. 

Section 8 presents some conclusions and recommendations for future research directions. 
Finally, Section 9 presents a chronological review of the technical activities under the 

DynRIIC project, as compiled from the monthly status reports. 
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2 Architecture of a QoS Management System 

One of the main goals of the DynRIIC project was to architect, design, and prototype QoS 
technologies for dynamic information spaces, including the following: 
 

• Support for dynamic resource and information management and reconfiguration as COIs 
and COI makeup change. 

• QoS management decisions based on critical mission requirements. 
• Hiding of the underlying heterogeneity of the raw resources and communication 

protocols provided by different platforms. 
 
One of the key elements underlying information spaces is an Information Management System, 
such as the AFRL JBI RI, which provides information management and brokering for clients 
throughout an information space. We designed and developed a QoS Management System that 
works alongside an IMS in an information space as illustrated in Figure 4. The QMS provides 
QoS management (including resource management and quality of information management) for 
the assets within a COI and for assets that are shared between COIs, in the dynamically 
changing, mission driven environment within which COIs operate. 

The QMS allows entities interoperating within and between COIs to do the following: 
 

• Specify their (mission, application, system) requirements and facilitate conversion of 
these requirements into policies; 

• Measure the QoS provided in a system; 
• Control knobs to affect QoS;  
• Adapt to compensate for changes in QoS; and 
• Mediate conflicting QoS requirements. 
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Figure 4: Introducing a QMS alongside the IMS in a COI 
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The QMS is designed to support dynamic COIs, in which assets can enter or leave during a 
COI’s operation, and interoperation of COIs, in which assets and resources can be shared 
between COIs. Assets that enter a COI will join the COI’s mission and be assigned a role by a 
mission manager associated with the COI’s command authority. The role the asset plays in the 
mission determines its importance relative to other assets, and may have an effect on the 
demands it places for resources within the COI. 

The QMS uses a layered management system to manage QoS throughout the COI, as 
illustrated in Figure 5. System Resource Managers (SRMs) provide QoS policies based on the 
mission requirements and the roles and numbers of assets in the mission, as indicated by the 
command authority. It pushes these QoS policies to Local Resource Managers (LRMs) 
associated with applications, platforms, or assets, which enforce the policies. The policies 
determine how many and what kind of resources the asset has access to (such as network 
bandwidth and computer processing at a command center) and how it should use them to achieve 
the mission goals (e.g., higher resolution or precision data versus higher rate data). The QMS 
includes a library of mechanism components that access network and CPU controls, and shape 
data, for enforcing QoS policies. 

When assets enter, and are admitted to membership in a COI, the SRM reallocates resources 
as needed to grant the resources they need. The entering asset requests the resources it needs to 
perform the role it has been assigned and the SRM determines whether it can provide them 
without taking resources from higher priority elements. Once the SRM determines the allocation 

COA

COI 1 COI 2

Mechanism
Components

System
Resource
Manager

System
Resource
Manager

System
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
ManagerLocal

Resource
Manager

Local
Resource
Manager Local

Resource
Manager

Filtering Scaling Com-
pression

Rate
control

CPU
control

Network
priorities

Resources 
shared 

between 
COIsPolicies

Policies

Policies

COA

COI 1 COI 2

Mechanism
Components

System
Resource
Manager

System
Resource
Manager

System
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
ManagerLocal

Resource
Manager

Local
Resource
Manager Local

Resource
Manager

Filtering Scaling Com-
pression

Rate
control

CPU
control

Network
priorities

Filtering Scaling Com-
pression

Rate
controlFiltering Scaling Com-

pression
Rate

control

CPU
control

Network
priorities

Resources 
shared 

between 
COIsPolicies

Policies

Policies

 
Figure 5: QMS’s core components provide dynamic integration and reconfiguration in a COI and 
dynamic interoperation of assets shared by cooperating COIs. 



 
 
 

  

 
 
 

8

of resources the asset gets, it is encoded as a contract that the asset’s LRM enforces. Assets that 
do not join a COI or are not admitted to membership in the COI are either treated non-
preferentially or are blocked from access to the IMS, depending on the COI’s command policy. 
Assets treated non-preferentially are allowed to publish and receive information and therefore 
use resources, but only if resources are available and only with “best effort” service.  

As illustrated in Figure 6, the QMS architecture consists of core components, a set of 
interfaces, and IMS adapters. The core components provide dynamic QoS management 
capabilities. The interfaces facilitate communication between the QMS and clients, and between 
the QMS and a mission manager, such as a commander, demonstration driver, or other control 
agent. IMS adapters provide communication between the QMS, clients, and IMSs. 

2.1 QMS Core Components 

QMS Core consists of core modules and a connectivity monitor. The core modules are illustrated 
in Figure 7 and include System Resource Managers, Local Resource Managers, and QoS 
mechanisms. The System Resource Manager creates QoS policies based on mission policies, 
roles, and priorities, and resource availability. The QoS policies include allocations of resources 
for clients (e.g., an amount of network bandwidth and percent of CPU) and guidance on how 
clients should use the resources to achieve their mission goals (e.g., for higher rate, higher 
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Figure 6: Architecture of QMS 
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precision information, or higher resolution). The SRM pushes these QoS policies to an LRM 
associated with each client. 

The Local Resource Manager enforces the resource allocations provided by the SRM. It 
selects, configures, and actuates the mechanisms necessary to meet the QoS policies within the 
resource allocations and provides feedback about actual usage. It also adjusts configurations and 
mechanisms as needed based on the feedback. 

QoS mechanisms actuate specific QoS controls and adaptations. They control resource 
management interfaces, shape data to provide the desired quality within the allocated resources, 
and adjust adaptations as needed in response to feedback. Mechanisms can include the following: 
 

• Application adaptations – Altering the rate, size, form, and even content of data. 
• CPU controls – Setting process priorities, scheduling parameters, or reserving CPU 

cycles [6]. 
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Figure 7: QMS core modules include a layered QoS management architecture of system and local 
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• Network controls – Setting bandwidth priorities or traffic classes [9] or bandwidth 
reservations [28]. 

• IMS controls – Setting the parameters exposed by IMSs or pub/sub services [18]. 
 

The Connectivity Monitor (CM) monitors resource (e.g., bandwidth and CPU) usage, the rate 
of data published into an IMS, processing time of an IMS, the rate at which the subscribers 
receive the data, and other measures useful in QoS management, reporting, and analysis. As 
illustrated in Figure 8, a CM consists of Edge Components that monitor resource usage on both 
sides of the network and a coordinator that analyzes and reports the information to the QoS 
Internal Display GUI, described below in Section 3.4.2.  

2.2 QMS Interfaces 

The Asset Communicator (AC) enables an asset to introduce its capabilities to the SRM and 
mission manager. This interface includes submitting a membership request when a client first 
joins an information space. 

The Mission Manager Coordinator (MMC) facilitates communication between the mission 
manager and SRM; and between the mission manager and information producing assets/clients. 
This interface supports the specification of the total available resources in a COI to a SRM, the 
setting of initial policies, and specifications of roles in a mission. It also enables the SRM to 
react to events that can trigger resource reallocations, such as changes in roles, priorities, or 
client activation or deactivation. 

The QMS uses IMS Adapters to handle the differences between types of available IMSs, 
including differences in support for sending/receiving information, configuration and QoS 
options, and implementation languages. 
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Figure 8: Architecture of the Connectivity Monitor  
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3 The Prototype QoS Management System Version 1 

In the first year of the DynRIIC project, we developed version 1 of a QMS that provides the 
following features: 

 
• Dynamic resource allocation to clients based on mission–driven policies and resource 

requests  
o In an information space or between interoperating information spaces. 
o On dynamic entry and exit of assets in a COI. 
o On change of mission policies, mission roles, or priority of assets. 

• Dynamic and policy-driven QoS management of information being published and 
subscribed to in IMSs. This QoS management includes rate/latency management, 
accuracy (such as cropping), precision (such as compression), network management 
(such as setting of Diffserv codepoints), and CPU management based on the priority, 
mission, and role of the participating assets. 

• Monitoring of resource allocation and usage. 
• Support for a variety of IMSs and pub/sub services, including JBI RI 1.2.6, TAO 

Notification Service [19], and OCI’s Data Distribution Service (DDS) [18], OpenDDS 
0.8 [20]. 

• Support software, including a prototype Mission Manager GUI and a QoS Management 
Internal Display. 

 
The prototype QMS implementation includes an implementation of an SRM and LRM, a set of 
QoS mechanisms, a connectivity monitor, a structure for QoS policy, and adapters for the JBI RI 
and DDS. To demonstrate and evaluate the effectiveness of the QMS enhanced QoS managed 
information delivery, we also developed a prototype application of publisher and consumer 
clients exchanging real-time imagery data, with a variety of roles and QoS requirements. We also 
prototyped a mission manager GUI that serves as a demonstration driver, a QoS GUI that 
displays the internals of the QoS behavior and its relation to the policies, and a prototype 
membership contract for new clients to enter information spaces in the demonstration. 

3.1 Prototype QMS Core Elements 

3.1.1 The Prototype System Resource Manager 

Our prototype SRM takes as input the number and types of resources available, the number of 
assets in each role (e.g., surveillance or targeting), the relative weight of each role (e.g., targeting 
is twice as important as surveillance), and the relative weights of each COI/infospace (e.g., an 
information space servicing an anti-terror mission is ten times as important as a logistics COI). 
For each resource shared by multiple clients, the SRM uses the algorithms described in Section 
4.1 to determine an allocation of resources for each client, based upon the client’s role, relative 
weights, and the amount of contention for the resource. The SRM compares the resource 
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allocation to a minimum and maximum allowable and never allocates more than the maximum 
nor, when possible, less than the minimum.  

The minimums and maximums are computed offline for each type of client and role and are 
based on the minimum quality acceptable for the role and the maximum quality that can 
currently be achieved. The SRM prototype utilizes an SRM for each information space (i.e., each 
COI). When resources and/or assets are shared between information spaces, another SRM is 
instantiated on the fly to allocate the shared resources. 

The resource allocation is embedded with the rest of the QoS policy, described below, and 
distributed to the LRMs for each client using the resource. The prototype supports CORBA IDL 
and XML structures for storing, populating, and disseminating the QoS policies. 

3.1.2 The Prototype Local Resource Manager 

The design of the LRM is illustrated in Figure 9 and described in more detail in [15]. The LRM 
takes as inputs the resource allocations, minimums and maximums for each QoS attribute (e.g., 
size, rate, compression level, etc.), and the tradeoffs for each role (i.e., which QoS attributes are 
most important for the role). It computes the appropriate levels for each attribute and sets the 
proper attributes on the QoS mechanisms. The LRM includes a feedback loop, monitoring the 
actual resource usage and QoS provided (using the Connectivity Monitor) and adjusting the 
attribute settings if the resource usage or provided QoS significantly diverges from the QoS 
policy. 
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Figure 9: The design of the LRM and its relation to other QMS elements. 
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3.1.3 QoS Mechanisms 

We instantiated QoS mechanisms as software components called qoskets [23, 24], including 
compress, scale, and crop qoskets that shape image information objects; CPU and Diffserv 
qoskets that set operating system and network priorities, respectively; and control of the rate at 
which information objects are published. Each QoS mechanism takes as input a level to 
configure it, which is provided by the LRM dynamically based on the resource allocation, role, 
and QoS policies.  

3.1.4 QoS Policies 

The policies include a set of QoS constraints and tradeoffs associated with the specific role a 
client is playing in a COI. The QoS constraints in our prototype are provided by a default policy 
created off-line and can be changed manually at runtime using the Mission Manager GUI, 
described below. The SRM then inserts the resource allocation before sending it to the LRMs for 
enforcement. Table 1 shows an example of QoS policies for three different roles, including 
ranges of resources – bandwidth and CPU – that a client can utilize and acceptable ranges for a 
set of information quality attributes, such as rate, scaling, compression and cropping. We created 
XML and CORBA IDL structures for storing and passing around policy information. 

 
Table 1: Sample QoS policies for surveillance, target tracking, and battle damage assessment roles. 

Mission Relative Priorities 

ISR_COI 1 

TST_COI 2  
QoS Constraints and Tradeoffs 

Resource Needed Quality of Information Needed 

Roles Relative 
Priority 

BW 
Needed 
(kbps) 
(Min-
Max) 

DiffServ 
Codepoint 

CPU 
(Re-
ceiver ) 
(%) 

Rate 
(Timeliness) 
IO/Frame 
Rate 

Scaling 
(Size) 

Compression 
(Accuracy) 

Cropping 
(Precision) 

SURVEILLANCE 
(ISR) 1 50-200 NORMAL 0.1-2.0 0.1 – 0.4 Qtr-Qtr JPG-JPG None 

TARGET 
TRACKING (TT) 6 150-

600 CRITICAL 1.5-5.5 1-1.5 Half-
Half None - JPG None 

BATTLE 
DAMAGE 
ASSESSMENT 
(BDA) 

4 300-
400 URGENT 1.5-3.0 0.25-0.5 Full-

Full None-JPG None-30% 

  

3.2 Interfaces 

QMS is built using CIAO CCM [5], so all the communications between QMS components are 
based on CORBA interfaces. The interfaces that QMS uses to communicate with the application 
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components and IMSs are provided as XML schemas and metadata files, and also as CORBA 
IDL. The first format is suitable for XML based IMSs, such as the JBI RI, and the second is 
suitable for CORBA based pub/sub services, such as the Notification Service and DDS.  

3.2.1 Asset Communicator (AC)  

An asset uses this interface to publish a membership contract to introduce its capabilities to the 
SRM and mission manager. QMS provides an IDL and an XML version of this interface. The 
CORBA interface is 
 

module uav { 
  struct Resource { 
    string units; 
    double minVal; 
    double maxVal; 
  }; 
 
  struct Resources { 
    Resource BW; 
    Resource CPU; 
  }; 
 
  struct InitiateJoin { 
    string uavIdentifier; 
    string acceptable_roles;     
    string parentCOI; //to be filled by SRM 
    string sharedByCOIs;//to be filled by SRM 
    boolean isActive; 
    boolean qosManaged; 
    Resources resourcesNeeded; //total resources  
    Resources resourcesNeededInSURVEILLANCE; //resources in 
specific roles 
    Resources resourcesNeededInTARGET_TRACKING; 
    Resources resourcesNeededInBATTLE_DAMAGE_ASSESSMENT; 
    Resources resourcesProvided; 
    string inputDataType; 
    string outputDataType; 
    string timeOfJoining; 
    string leasePeriod; //duration for which this UAV will 
be active 
    string xml_contract; 
  }; 
}; 
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Using this interface, a joining asset identifies itself to SRM by presenting  
 

• its identity (uavIdentifier),  
• the roles it can play (acceptable_roles),  
• the COI to which it belongs (the SRM fills this information in if the asset doesn’t),  
• whether it shares resources with other COIs (sharedByCOIs), 
• whether it is active (isActive),  
• whether it is currently under QoS management,  
• the resources it needs (total), and the resources it needs for specific roles, 
• the resources it provides,  
• the type of data it publishes and type of data it consumes, 
• the time at which it joined a COI,  
• the leasePeriod and how long it wants to be QoS managed – after this period the SRM 

assumes the asset to be inactive unless a new lease is submitted. 
 
The field xml_contract is the xml version of this contract. It is there to provide flexibility for 

the SRM to select the interface to use. For instance, if an SRM is using the JBI, it uses the XML 
based interface. If an SRM is using the CORBA Notification Service, it uses the CORBA 
interface.  

3.2.2 Mission Manager Coordinator (MMC)  

The MMC facilitates communication between the Mission Manager and SRM; and between the 
Mission Manager and assets. Similar to the Asset Communicator, this has both XML and 
CORBA interfaces. 

Communication between the Mission Manager and SRM involves the following interfaces: 
 

• Submitting total resources available to the assets in a COI 
 

struct TotalResources { 
    string coi_name; 
    double avail_bw; 
    string bw_units; 
    double avail_cpu; 
    string cpu_units; 
    string xml_contract; 
  }; 
   
• Submitting a QoS Policy template to the SRM. This has two parts – an abstract policy 

that can be applied to any data: 
   
//QoSPolicyTemplate 
struct QoSPolicyTemplate { 
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    string role;  
    string priority; 
    string parent_coi; 
    ResourcesAllocated BW; 
    ResourcesAllocated CPU; 
    string rate_units; 
    string size_metric; //mapped to scaling for image data 
    string size_units; 
    string accuracy_metric; //mapped to compression for 
image data 
    string accuracy_units; 
    string precision_metric; //mapped to cropping for image 
data 
    string precision_units; 
    QoSConstraints  qs_S;  //for Surveillance 
    QoSConstraints  qs_TT; // for TT 
    QoSConstraints  qs_BDI; // for BDA 
    string xml_contract; 
    //Jitter - only in xml 
  };  

 
And a policy specific for image data: 
 

struct PolicyStatus { 
    string uavIdentifier; 
    PCES_UAV::Role roleValue; 
    PCES_UAV::Priority priorityValue; 
    string parentCOI; 
    //COIs_Shared coisSharedWith; 
    string coisSharedWith; 
    double min_frame_rate; 
    double max_frame_rate; 
    double min_cpu_reservation; 
    double max_cpu_reservation; 
    long min_compression; 
    long max_compression; 
    long min_cropping; 
    long max_cropping; 
    long min_scaling; 
    long max_scaling; 
  }; 

 
• Submitting weights 

 
struct BW_CPU_Weights { 
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    double bw_surveillance_weight; 
    double bw_tracking_weight; 
    double bw_bda_weight; 
 
    double bw_urgent_priority_weight; 
    double bw_high_priority_weight; 
    double bw_normal_priority_weight; 
    double bw_low_priority_weight; 
 
    double cpu_surveillance_weight; 
    double cpu_tracking_weight; 
    double cpu_bda_weight; 
 
    double cpu_urgent_priority_weight; 
    double cpu_high_priority_weight; 
    double cpu_normal_priority_weight; 
    double cpu_low_priority_weight; 
 
    //Weights for different missions 
    //where mission is represented by a COI 
    double isr_mission_weight; 
    double tst_mission_weight; 
    double bdi_mission_weight; 
  }; 
 
• Submitting Activate Asset command – The Mission Manager instructs an SRM that 

an asset is active and needs to be QoS managed 
  

struct ActivateAsset { 
    string uavIdentifier; 
    string role; 
    string priority; 
    string parent_coi; 
    boolean active; 
  }; 

 
• Submitting Change Role Command – The Mission Manager instructs an SRM that 

the role of an asset has changed 
 

struct ChangeRole { 
    string uavIdentifier; 
    string newRole; 
  }; 
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• Submitting Change COI Command – The Mission Manager instructs an SRM that the 
COI of an asset has changed 

 
struct ChangeCOI { 
    string uavIdentifier; 
    string newCOI; 
  }; 

 
• Submitting Change Priority Command – The Mission Manager instructs an SRM that 

the priority of an asset has changed  
 
struct ChangePriority { 
    string uavIdentifier; 
    string newPriority; 
  }; 
 

Communication between the Mission Manager and Asset involves the following interface: 
  

• Start and Stop Signal for assets to send data 
 
struct ImageState { 

        boolean startProcessing; /** true to begin image and 
false to stop image */ 

  long imageRate; 
  Location imageLocation; /** image location where the 
asset should move to*/ 
}; 

3.3 IMS Adapters 

QMS uses adapters to communicate with the JBI RI IMS and DDS. We assume that a COI 
contains at least one IMS or pub/sub service. In our prototype software, we use separate 
dissemination channels for data traffic (i.e., MIOs) and control traffic (including resource 
allocations, QoS policies, and mission manager messages).  

We use the CORBA Notification Service [19] for the control messages between the QMS and 
assets, the QMS and the Mission Manager, and between the components of the QMS. The 
CORBA Notification Service is a channel based event service – publishers publish information 
on a specific channel and subscribers listen on specific channels. The subscribers are notified if 
the status of the channels changes, e.g., if new messages arrive on the channel. The messages can 
be further filtered based on the topic or event content titles.  

For data traffic, we prototyped and demonstrated use of the JBI RI IMS and DDS. 
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3.3.1 Communication with the JBI RI IMS 

Because of the heterogeneity of the languages and component models (QMS is primarily written 
in the C++ implementation of CCM, i.e., CORBA 3.0 [17], and the JBI RI 1.2.6 is written in 
Java) used in the QMS and IMS, we provided adapters for them to communicate. Since CORBA 
3.0 is a superset of CORBA 2.0, it is not a straightforward process for a CORBA 2.0 interface to 
invoke CCM components. To overcome this, QMS provides CORBA 2.0 interfaces that can 
invoke any other CORBA 2.0 interfaces, and vice versa. The adapters provide CORBA 2.0 
interfaces to communicate with QMS and Java interfaces to communicate with the Common API 
(CAPI) of the JBI RI. There needs to be two adapter components – one publisher to the IMS and 
one subscriber/query from the IMS – for every QMS component that interacts with the IMS, 
specifically the SRM, LRM and Edge Components.  

Figure 10 illustrates the communication pattern between the QMS components and the JBI RI. 
An alternative to this pattern would be to use JNI (Java Native Interface). However, using CCM 
with JNI increases the complexity of communication (requiring marshalling and demarshalling a 
CCM event or facet/receptacle call) and increases the latency in QMS response time (because it 
entails loading a Java virtual machine into a CCM process). 

3.3.2 Communication with DDS 

Implementations of DDS vary. We integrated and tested with OpenDDS from OCI, an open-
source version of DDS based on CORBA [20]. Because OpenDDS uses CORBA 2.0 (whereas 
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the QMS uses CORBA 3.0) and to maintain uniformity with the QMS interactions with the JBI 
RI, the QMS software also provides adapters for DDS. The QMS adapter for DDS is shown in 
Figure 11.  

3.4 Prototype Support Software for the QoS Management System 

Although not a focus of our research and development, we also prototyped instances of support 
software for the QMS system, including a Mission Manager for entering mission-level QoS 
requirements and driving demonstrations, a QoS Internals display showing the behavior of the 
system under QoS management, and sample clients.  

3.4.1 Mission Manager GUI 

One of the key aspects of the QMS concept, design, and instantiation is that it is mission-driven. 
That is, it makes its QoS decisions based on an understanding of the mission or goals of the 
collection of distributed applications making up information spaces, the roles clients are playing 
in the overall mission, and the relative importance of each client and role. While we have 
described missions in defense terms, the concept applies to any domain in which a distributed 
system has a set of overarching goals. For example, a military mission might be rapid and 
effective response to time sensitive threats; a commerce mission might be to maximize sales; a 
critical infrastructure mission might be delivery of commodities such as power to users; and an 
emergency response mission might be the peacetime equivalent of time sensitive targeting, i.e., 
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rapid and effective response to emergency and disaster situations. The role of a mission manager 
can be played by a human command authority or by a scripted demonstration driver. Regardless, 
the need for command and control tools to support mission management is clear. Therefore, we 
developed a prototype Mission Manager GUI, simulating a command authority that drives a 
mission in network-centric warfare and enabling control of the QMS and applications using it. 
As illustrated in Figure 12, the Mission Manager GUI enables a user to start and stop clients, 
change the roles and priorities of clients, move clients between COIs (and therefore information 
spaces), set the ranges for QoS policies, and indicate the amount of available resources and 
whether they are shared. 

3.4.2 QoS Internals Display 

To better support testing, demonstrating, and measuring the benefits of the QMS, we developed a 
prototype graphical display of the QoS policies, delivered QoS, resource allocations, and actual 
resource usage, depicted in Figure 13. The information displayed on this console is gathered in 
several places in the QMS prototype, including by the Connectivity Controller, SRMs, LRMs, 
and Mission Manager. The information is updated in real-time and published to the CORBA 
Notification Service, to which the QoS Display subscribes. The QoS Display has four main 
subparts: 
 

• Client identification information which identifies the client, its role, priority, the COI 
to which it belongs, the IMS being used by that COI’s information space, and the 
SRM that manages QoS for this client. 
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Figure 12: Prototype Mission Manager GUI 
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• Resource information which shows the bandwidth and CPU allocated to and used by 
the client, as well as the network priority (i.e., Diffserv codepoint) assigned to traffic 
originating from the client. 

• QoS policy information includes the policies for information quality, i.e., the 
minimum and maximum values for information quality attributes, and the actual 
values for those attributes at runtime. 

• Latencies in the IMS displays the time taken for information objects published to the 
information space’s IMS to be processed and delivered to clients subscribing to them. 

 

The GUI uses color coding to convey roles and adherence to policy. For example, in Figure 13, a 
client performing surveillance (the ISR role) is in a pane with a blue frame; the client performing 
target tracking (the TT role) is in a green frame; and the client collecting battle damage 
information (the BDA role) is in a yellow frame. Usage information that adheres to the QoS 
policies is displayed as black text, while usage information that violates QoS policies and 
resource allocations is displayed in red. 

3.4.3 Sample Clients 

To serve as a test and demonstration application, we developed clients simulating imagery 
sensors and command and control nodes. The imagery sensors are simulated unmanned aerial 
vehicles (UAVs) similar to those that we used in a flight demonstration at White Sands Missile 
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Figure 13: The prototype QoS Internals Display 
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Range in 2005 [13]. They read prerecorded UAV imagery gathered by an Electro-Optical (EO) 
sensor and publish it to an information space. Like the actual UAVs in the flight demonstration, 
the simulated UAVs can operate in three roles: ISR for surveillance of an area of interest, TT for 
tracking a target, and BDA for collecting battle damage imagery. 

Paired with each imagery publisher is an information receiver that subscribes to the imagery 
and simulates part of the command and control (C2) functionality in the flight demonstration. 
The receiver clients include a GUI to display each image as it is received. The GUI, illustrated in 
Figure 14, frames the imagery display in a color coded frame corresponding to its role (blue for 
ISR, green for TT, and yellow for BDA). The display provides a visual indication of the QoS 
management in effect with apparent changes in imagery rate and size when roles change 
(resolution changes due to compression levels are less visually apparent). 
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Mission Manager driver for the scenario

Color of the border 
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Figure 14: GUI of simulated C2 receiver clients displaying imagery published by simulated UAV 
clients. 
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4 QoS Management Algorithms 

As described in Section 1.1, the first part of the DynRIIC project concentrated on the architecture 
and prototyping of QoS management techniques for dynamic information spaces. This included 
prototyping an initial QoS management algorithm for the SRM component. In the second part of 
the project, we built upon this basis to define, implement, and evaluate a set of more capable 
QoS management algorithms for dynamic, interoperating information spaces. 

The initial prototype algorithm defined during the first part of the project is a resource 
allocation algorithm that divides each shared resource among the users based on their relative 
importance and resource needs.  

Since the initial algorithm considered only one resource at a time, it did not consider the 
system dynamics in its allocations, i.e., the way managing one resource affected others. 
Therefore, in the second part of the DynRIIC project, we designed and implemented QoS 
management algorithms that consider multiple QoS levels and the resources needed by each QoS 
level. These algorithms, called Multi-Resource Multi-QoS (MRMQ) allocation algorithms, 
consider the QoS levels at each place that QoS can be affected (called control points or 
applications1, terms that we use interchangeably), attempting to maximize a measure of overall 
benefit (i.e., a utility function) defined for an information space, within the available resources.  

Multi-Resource Multi-QoS allocation is an NP Hard problem [11], leading to a tension 
between the speed to produce a QoS allocation and the quality of the allocation (in terms of how 
close to an optimal allocation). One can guarantee arriving at an optimal solution if and only if 
one examines a search space of all possible allocations, an exponential search in general. Since 
this is infeasible for all but modestly sized information spaces, we took two simultaneous 
approaches: (1) developing heuristics that enable the search space to be reduced in many cases, 
and (2) developing approximation algorithms that run in less than exponential time in the worst 
case. 

We developed three MRMQ algorithms for QoS allocations within an information space, 
called intra-information space algorithms:  

 
• Optimizing Brute Force which always provides an optimal solution but takes 

exponential time in the worst case. We developed two optimizations that can prune 
the search space and reduce the runtime significantly.  

• Greedy Approximation is an approximation algorithm based on 0-1 integer 
programming [26]. This algorithm produces a near optimal allocation in many 
scenarios and runs in polynomial time. 

• Multi-Resource Multi-QoS Knapsack Approximation (MMKP) is a dynamic 
programming approach in which we extended existing multi-dimensional knapsack 
approaches [16] to include the third dimension of multiple resources.  

 
Since one of the primary goals of the ICED program, and hence the DynRIIC project, is to 

support interoperating information spaces, we didn’t stop at QoS allocation algorithms for 
                                                           
1 The algorithms treat related control points, such as those for a single application, as a single control point.  
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individual information spaces. We also researched algorithms for allocating QoS for applications 
that share resources across information spaces. We developed a set of two-phase QoS allocation 
algorithms. The first phase determines the applications that share resources across multiple 
information spaces and divides the shared resources between the information spaces. The 
resource allocations from the first phase are used as constraints by the second phase, which runs 
an intra-information space algorithm to allocate QoS within each information space. 

This section describes the QoS management algorithms that we developed under DynRIIC. 
We begin by describing the algorithm used in the initial prototype. Next, we describe each of the 
three intra-information space algorithms. Finally, we describe the two-phased multi-information 
space algorithms. 

4.1 Resource Management Algorithm 

The initial prototype SRM uses a resource allocation algorithm. The algorithm allocates 
resources based on the following inputs and context: 

• The relative importance of the COI’s mission compared to other COIs’ missions. 
• The relative importance of the asset’s role compared to other roles in a mission. 
• The total amount of resources available. 
• The total number of assets sharing a particular resource. 

 
The algorithm iterates over each of the shared resources and calculates an allocation unit 
(alloc_unit) based on the following formula: 
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The formula then allocates a number of allocation units to each participant (assets, clients, 
control points) using a shared resource equal to the weight of its role (i.e., its importance relative 
to other roles) times the weight of its COI (i.e., the COI’s importance relative to that of other 
COIs), as calculated by the following formula: 
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The algorithm is constrained by the following upper and lower bounds: 

• It will not allocate more than the maximum amount of a resource that the asset can 
use. 

• It will attempt to not allocate less than the minimum amount of a resource needed by 
the asset to do something meaningful. 
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4.2 The Optimizing Brute Force QoS Management Algorithm 

The goal of each MRMQ algorithm is to select an allocation of applications running at particular 
QoS levels that simultaneously: 
 

• Is feasible, i.e., fits within the resources available in the system (information space or 
set of information spaces). An infeasible allocation cannot be deployed and hence is 
not an acceptable solution for the algorithm. 

• Maximizes mission utility, i.e., allocates the applications of most importance to the 
overall mission and provides higher QoS where it is most useful to the mission. 

 
While the best utility function to use can differ for given situations, missions, or domains, a 

reasonable utility function to use for information spaces is one that calculates utility based on the 
criticality of the applications that are run and the QoS level at which they are run. This is 
captured by the following equation: 

 

 ( )( )iq

A

i
ic QwCwUtility ∑

=

=
1

  (3) 

where: 
 

• Ci is a measure of the relative criticality of application i compared to other 
applications. 

• Qi is a value assigned to the QoS level chosen for application i. 
• wc and wq are weighting factors (to control the tradeoff of running more applications 

or applications at higher QoS levels). 
 

The feasible allocation with the highest utility is considered the optimal allocation, or solution. 
Notice that there could be multiple allocations with equal utilities, so there could be multiple 
optimal solutions.  

The above utility function does not consider resource efficiency. However, keeping resources 
in reserve could lead to more effective QoS management in dynamic information spaces because 
wholesale reconfigurations will be reduced if there are resources available to handle overload 
situations or the addition of new applications. We can accomplish this by adding a slack factor to 
the utility function, i.e., a numerical measure of the resources available. 
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where: 
 

• R is a measure of the resources available 
• wr is a weighting factor to control the tradeoff of using available resources now to run 

more applications (or higher QoS levels) or keeping the resources in reserve. 



 
 
 

  

 
 
 

27

 
The Brute Force algorithm always provides an optimal solution but potentially runs in 

exponential time. The algorithm uses the total number of control points and their QoS levels to 
build a combinatorial decision tree. As depicted in Figure 15, levels of the decision tree represent 
applications, branches represent QoS levels, and leaf nodes represent combinations of an entire 
set of applications and QoS levels in an information space.  

The Brute Force algorithm traverses the tree recursively and examines each leaf node for 
feasibility and utility. If the algorithm finds a node to be feasible, the algorithm compares the 
utility of the node with the highest utility of previously evaluated feasible solutions. If the utility 
of the node is higher, then this solution becomes the new best solution. The best solution that the 
algorithm reaches after evaluating all the leaf nodes is the optimal allocation, i.e., the feasible 
solution with the highest utility. 

The basic Brute Force algorithm, with no optimizations, runs in Θ(qa) where2: 
 

• q is number of QoS levels for each application, and 
• a is the number of applications. 

 
We developed two optimizations that can prune the search space, significantly in some cases. 
The following sections describe these optimizations. 
                                                           
2 Θ notation is a tight upper and lower bound on the algorithm execution, i.e., the algorithm will check every node of the tree, 

exactly qa nodes. 

Service Level Choice Application / Control Point

Complete set of choices (Every combination of application and service levels);
Only some of these will be feasible, i.e., fit within available resources

CP-c

CP-b

CP-a

 

Figure 15: Decision tree that the Optimizing Brute Force algorithm creates and traverses to allocate 
resources. 
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4.2.1 Pruning Using an Infeasibility Check 

This optimization utilizes the fact that as the algorithm traverses down from the root node to leaf 
nodes, the number of applications and QoS levels represented in the nodes increases. 
Consequently if the partial allocation represented by any non-leaf node is not feasible (i.e., it 
requests more resources than that are available), then all the nodes in the subtree under the non-
leaf node are also infeasible (because each will add applications to the already infeasible partial 
allocation). The entire subtree can be bypassed. 

As illustrated in Figure 16, the algorithm analyzes the non-leaf nodes for feasibility as it 
traverses the decision tree. If at any time, it finds a non-leaf node that fails the feasibility-check, 
the algorithm prunes the entire subtree under that node. This optimization works well when 
many of the leaf nodes represent infeasible allocations, leading to significant pruning.  

4.2.2 Pruning Using a Utility Check 

This optimization utilizes the fact that as the algorithm traverses down from the root node to leaf 
nodes (increase in depth of a tree), the number of applications and QoS levels represented in the 
nodes increases and the utility associated with each node will be more than that of its parent 
node. As illustrated in Figure 17, at each point in the traversal of the tree, the algorithm walks the 
path of highest utility first (essentially following the branches of highest QoS levels). If the leaf 
node reached is lower utility than the best solution reached so far, the entire subtree can be 
pruned, since all other paths would lead to even lower utility. 

This optimization works well when the algorithm finds a high utility feasible solution early, 
enabling pruning of many subtrees with lesser utility. In the worst case, the algorithm finds many 

 
Figure 16: Brute Force using pruning with an infeasibility check. 
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feasible nodes and relatively low utility solutions, resulting in little or no pruning. In these cases, 
the algorithm may still end up examining nearly the entire tree. Therefore, the Optimizing Brute 
Force algorithm is O(qa). 

4.3 The Greedy Approximation QoS Management Algorithm 

Greedy Approximation is an approximation algorithm based on 0-1 integer programming. 0-1 
integer programming tries to maximize the objective function: 
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for j = 1, 2, …, n, where: 
 

• Each xi is an application at a particular QoS level 
• pi is the priority of the application  
• Hij is the resource usage of xi  
• Lj is the vector of the capacity of the resources 
• m is the number of applications and n is the number of resources. 

 

 

Figure 17: Brute Force using pruning with a utility check. 
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Greedy Approximation is based upon an algorithm in [26]. It allocates QoS levels to applications 
contending for resources greedily using an effective gradient measure, a ratio of the benefit that 
each application provides and the cost that it incurs. The algorithm measures the benefit of an 
application as the value it contributes to the objective function above. It measures the cost of an 
application as the amount of resources requested by the application. The algorithm aggregates 
the resources into a single dimension and assigns a penalty to increase the cost associated with 
requesting a highly contended resource (i.e., a resource for which a significant amount has 
already been allocated to other applications).  

Our algorithm extends the algorithm in [26] in the following ways: 
 

• We have two variable dimensions that need to be considered. Each application can 
have multiple QoS levels from which to choose. In the algorithm in [26], each 
application has one service level. Our algorithm treats each combination of 
application and QoS level as a separate viable choice, while ensuring that only one 
QoS level can be chosen for each application. 

• We compute an initial penalty vector for research usage. The algorithm in [26] only 
computes penalties as the algorithm progresses, which can lead to significantly 
suboptimal allocation. That is, it treats all resources equally and completely available 
at the beginning. In reality, some resources are more likely to become bottlenecks 
(e.g., because more applications request them or applications request higher amounts 
of them) than others. Our algorithm performs an initial pass and assigns an initial 
penalty to highly contended resources, making it cost more to request these resources. 

 
After computing the initial penalty, our algorithm computes the total number of applications 

(i.e., application-QoS level combination) as described in 1 above. It iterates over the following 
steps until either all the applications are granted the resources that they request or there are no 
more resources left to allocate to any remaining applications: 

 
1. It computes the effective gradient for each application as the ratio of benefit divided by 

cost. The benefit is the utility that a given application at a given QoS level provides. 
The cost is the resources requested adjusted by the penalty.  

2. It selects the application and QoS level combination with the highest effective gradient 
and eliminates further consideration of the other QoS levels for this application. 

3. It allocates the resources needed by the application and QoS level combination 
selected in step 2, removing those resources from the available resources. 

4. It prunes the list of applications of any infeasible choices. 
 
The runtime of the Greedy Approximation algorithm is O(a2qr), where: 
 

• a is the number of applications, 
• q is the number of service levels, and 
• r is the number of resources 
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4.4 The Multi-Resource Multi-QoS Knapsack Approximation QoS 
Management Algorithm 

Multi-Resource Multi-QoS Knapsack Approximation (MMKP) takes a dynamic programming 
approach to the Multi-dimensional Multi-Constraint 0-1 Knapsack problem. Multi-dimension 
refers to multiple applications and multi-constraint refers to the multiple QoS levels in which 
different applications operate. We extended the algorithm to incorporate several different sets of 
resources instead of handling a single resource. In general, the runtime of this class of the 
problem is pseudo-polynomial [7], so we developed an approximation algorithm that runs in 
linear time. 

The algorithm tries to maximize a benefit function B: 
 

 ∑= ibB  (7) 
 
where bi is the benefit of running the ith application and QoS level combination, with the 
constraint that the sum of all resources used is less than the resources available. 
 
 ∑ ≤ Rri  (8) 
 
The algorithm is a recursive algorithm: 
 

  
That is, at any step when there are sufficient resources to run the ith application and QoS level 
combination, that application and QoS level are chosen only if they increase the utility more than 
using the resources for other choices. If there are not sufficient resources, then the ith application 
and QoS level combination cannot be chosen. 

The algorithm extends MMKP to include multiple resources by normalizing the resource 
usage of all the resources to a scale of 0 to 1. It then iterates over the resources and applications 
and selects the QoS level that satisfies the most constrained resource. Since the algorithm is 
based upon dynamic programming, it uses a bottom-up approach to build a table (memoization) 
of solved problems, and uses these problems to solve the larger-size problems.  

Dynamic programming solutions are pseudo-polynomial in time. As explained in [8]: 
 

“A pseudo-polynomial-time algorithm is one that runs in time polynomial in the dimension of the 
problem and the magnitudes of the data involved (provided these are given as integers), rather than 
the base-two logarithms of their magnitudes. Such algorithms are technically exponential 
functions of their input size and are therefore not considered polynomial. Indeed, some NP-
complete and NP-hard problems are pseudo-polynomially solvable (sometimes these are called 
weakly NP-hard or-complete, or NP-complete in the ordinary sense). For example, the NP-hard 
knapsack problem can be solved by a dynamic programming algorithm requiring a number of 
steps polynomial in the size of the knapsack and the number of items (assuming that all data are 

B[i, r]  = 

max (B[i-1, r], B[i-1, r-ri] + bi) if ri <= r 

B[i-1, r] else 
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scaled to be integers). This algorithm is exponential-time since the input sizes of the objects and 
knapsack are logarithmic in their magnitudes.” 

 
In an attempt to develop a polynomial time, or better, version of the dynamic programming 

algorithm, we had to limit the sizes of the resources by normalizing them to a capacity of 0 to 1 
and choosing a quantization, i.e., a discrete unit of allocation for each resource. This results in 
resources being allocated in discrete units (e.g., tenths, hundredths, or thousandths) and makes 
the runtime of the algorithm linear, O(a*q*r), where the quantization affects the constant.  

For example, a quantization of 0.1 would allocate resources in tenths of their total amount 
available. This is a coarse grain allocation, e.g., if an application and QoS level requests 3% of a 
resource, it will get either 0% or 10%. The quantization also places a limit on the number of 
applications that can share a resource. For example, a 0.1 quantization means that at most ten 
applications can share any resource. 

The quantization provides an important configuration choice for MMKP. A finer grain 
quantization should, in theory, improve the optimality of the solutions but will increase the 
runtime significantly. For example, a quantization of 0.01 will allow up to 100 applications to 
share each resource and will allocate resources in hundredths, but would increase the execution 
time of the algorithm by at least 10x over that for a 0.1 quantization. For some resources, this 
would still be a gross quantization. For example, a 100 M link would be allocated in units of 1 M 
and a 1 G network link would be allocated in units of 10 M. For our baseline MMKP algorithm, 
evaluated in Section 0, we used a quantization of 0.1.  

4.5 Two-Phased Multi-Information Space QoS Allocation Algorithms 

We developed a two-phased approach to QoS allocation for multiple information spaces that 
might share resources. The first phase runs an inter-information space algorithm to identify the 
resources shared between information spaces and divide them between the information spaces. 
The resources allocated by the first phase become the total resources available to each 
information space for the second phase. An intra-information space algorithm is then run in each 
information space (constrained by the results of the first phase) to allocate QoS to the 
applications in that information space. The second phase algorithms can be run in parallel, each 
in their respective information space. 

4.5.1 First Phase Inter-Information Space Algorithms 

We developed three inter-information space algorithm choices, described in the following 
sections.  

4.5.1.1 Dynamic Approximation Algorithm  

The Dynamic Approximation Algorithm is a modified version of the Greedy Approximation 
algorithm we described in Section 4.3. First, the algorithm takes an initial pass over the 
applications in all of the information spaces to discover those that share resources between 
information spaces. This initial pass takes O(ar + aqr), where: 
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• a = the total number of applications in all the information spaces, 
• r = the total number of resources, 
• q = the number of QoS levels for each application 

 
After this initial pass, the algorithm runs the approximation algorithm on the subset of 
applications that share resources between the information spaces. This takes a'2qr time, where: 
 

• a' = the number of applications that share resources between information spaces, 
• r = the total number of resources. 

 
Since, in the worst case, a' = a, the second pass is O(a2qr). Therefore, the Dynamic 
Approximation algorithm runs in polynomial time: 
 
 O(ar + aqr + a2qr) (9) 

4.5.1.2 Even Splitter Algorithm 
In addition to the Dynamic Approximation algorithm, we developed two additional inter-
information space algorithms that serve two purposes. First, they are simple to implement, 
scalable, and likely to be sufficient for some situations. Second, they serve as baselines against 
which to evaluate the Dynamic Approximation algorithm, i.e., to see whether the additional 
processing required by the Dynamic Approximation algorithm provides significant improvement 
over the simple allocation of these algorithms and in what types of scenarios. 

The Even Splitter algorithm provides coarse-grained allocations to information spaces in 
linear runtime. It takes the resources shared between multiple information spaces and divides 
them evenly between the information spaces, providing an equal amount of each shared resource 
to the information spaces sharing it. For example, if two information spaces share resource X, 
each would be allocated half of X.  

4.5.1.3 Weighted Splitter Algorithm 
The Weighted Splitter algorithm is also designed to provide coarse-grained allocation to 
information spaces in linear time. It takes the resources shared between multiple information 
spaces and allocates them based on a weighted factor. This factor can be provided by an 
administrator or derived from the information space priorities. For example, if two information 
spaces share a resource X, and one information space is twice as important as the other, the 
algorithm allocates two thirds of the resource to the more important information space and one 
third of the resources to the other information space. 

4.5.2 Two-Phased QoS Management Algorithms Using the Inter-Information Space and 
Intra-Information Space Algorithms 

The combination of first phase inter-information space choices and second phase intra-
information space choices results in six total two-phase algorithms: 
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1. Dynamic Approximation + Greedy Approximation 
2. Even Splitter + Greedy Approximation 
3. Weighted Splitter + Greedy Approximation 
4. Dynamic Approximation + Optimizing Brute Force 
5. Even Splitter + Optimizing Brute Force 
6. Weighted Splitter + Optimizing Brute Force 

4.5.3 Coordination of the Two-Phase Algorithms  

The QoS allocation algorithms can be run centralized or distributed. In a centralized QoS 
management system, there is no advantage to be gained in running the two-phase algorithm over 
running an intra-information space algorithm (i.e., Greedy Approximation or Optimizing Brute 
Force) over the global view of all applications in all information spaces, unless the centralized 
node has the ability to run the second phase algorithms for each information space in parallel. 
The centralized algorithm is simpler and takes care of some coordination (QoS allocations for all 
applications are available at the same time). However, the centralized algorithm will not scale as 
well and introduces a single point of failure. 

In the distributed QMS, we run the second phase (the intra-information space algorithm) of the 
two-phase algorithm in parallel in each information space (sensible since the second phase 
algorithm only runs over the scope of an individual information space). The first phase can be 
run either distributed in each information space or in a centralized place. The former is possible 
because the algorithm is deterministic and will provide the same allocation of resources for all 
information spaces. The initial pass of the Dynamic Approximation algorithm requires 
knowledge of all applications in all information spaces.  

In any case, the distributed or centralized approaches require synchronization and coordination 
to be carefully controlled. The algorithms produce allocations that consist of assigning QoS 
levels to applications, with any change of QoS levels relinquishing some resources and acquiring 
others. The delivery and enforcement of the allocation must be completed before any new 
reallocation is undertaken and resources must be relinquished before other applications can use 
them. We discuss our approach to synchronization and coordination in more detail in Section 6. 

4.6 Summary Comparison of the Various QoS Management Algorithms 

Table 2 presents a summary of the advantages and limitations of the algorithms that we 
developed under the DynRIIC project and presented in this section. Section 5 presents more 
detailed evaluations of the relative performance of the algorithms presented in this section. 
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Table 2: Summary comparison of the QoS management algorithms 

Algorithm Advantages Limitations 

Resource Allocation 

• Fast 
• Requires only limited inputs 

about control points; simple 
input 

• Doesn’t consider the system 
dynamics and multi-
resource interactions 

• Doesn’t handle extreme 
resource contention (fixable 
with a starvation policy) 

• Based on a simple priority 
scheme (weights on system 
elements); does not 
optimize system utility 

Optimizing Brute Force 

• Provides an optimal 
solution 

• Finds a solution if one 
exists 

• Not scalable to large 
scenarios 

• Highly variable runtime 
• Requires elaborate inputs, 

including control points and 
QoS levels 

Greedy Approximation 

• Scales to large scenarios 
(quadratic runtime) 

• High optimality on average 

• Suboptimal solutions in 
some scenarios 

• Starvation of control points 
must be allowed 

• Requires elaborate inputs, 
including control points and 
QoS levels 

MMKP 

• Linear runtime 
 

• Poor optimality for highly 
contentious scenarios 

• Significant tradeoff of 
speed and optimality 

Two-Phased 

• Scales better than 
centralized 

 

• Performance best when 
information space size is 
nearly uniform and only a 
subset of applications share 
resources across 
information spaces 

• Currently requires 
centralized knowledge of 
applications to “discover” 
those that share resources 
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5 Evaluation of the QoS Management Algorithms 

We conducted a set of experiments to evaluate the relative performance of the algorithms, in 
terms of quality of the solution produced and the speed of execution to reach a solution. This 
section describes the experiments that we conducted and their results. The full experimental 
process and results are described in a separate report [25]. 

The experiments showed the following significant results: 
 

• The Optimizing Brute Force always produces an optimal allocation (i.e., the highest 
utility allocation possible within the available resources). While in the worst case its 
execution time is exponential in the number of applications, our heuristics provide 
good scalability up to moderate numbers of applications. 

• The Greedy Approximation provides much better scalability and in many cases 
produces near optimal solutions. Some scenarios produce outliers, i.e., sub-optimal 
solutions. We determined that one cause of outliers is scenarios with extremely high 
resource contention that is unlikely to happen in practice. 

• The MMKP algorithm exhibits good execution time performance and scalability with 
some choices for quantization, but poor optimality. 

• The two-phase algorithms with the Dynamic Approximation first phase provides the 
best optimality in contentious and non-contentious scenarios. The two-phase 
algorithm produces solutions near the optimality of a centralized version of the 
algorithm but scales better. The two-phase algorithm executes the fastest when the 
applications are uniformly distributed among the information spaces and only a 
relatively small number of the applications share resources across the information 
spaces.  

• The two-phase approximation algorithm (Dynamic Approximation-Greedy 
Approximation) provides more optimal solutions in highly contentious scenarios than 
the two-phase algorithms with the Even- or Weighted-Split first phase, because the 
first phase approximation algorithm considers contention for resources in its 
allocation, whereas the others do not. 

5.1 Experimental Set up  

5.1.1 Experiment Platform  

We used a personal computer with a 2.80 GHz Intel® Pentium®-4 CPU with 512 KB RAM, 
running the Linux (Fedora Core Release 6) operating system. 

5.1.2 Scenario Generator and Simulator 

We developed a scenario generator that randomly generates scenarios that we used as input to a 
simulator that we developed to execute the algorithms on the scenarios. Each scenario consists of 
a set of applications, a set of QoS levels for each application, a utility value for each QoS level, 
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and a set of resources and amount used by each QoS level. The generator accepts the following 
arguments: the number of applications (control points) in the scenario, the number of QoS levels 
(service-levels) for each application, the total number of resources in an information space, and 
the number of resources (to be chosen from the total number of resources) for each QoS level. 
The generator produces a random value for utility for each combination of application and QoS 
level, randomly chooses the resources to use for each QoS level from among those available, and 
generates a random amount of each resource that is requested for each QoS level.  

The simulator can simulate either a single information space or multiple information spaces. It 
takes as input a set of scenarios, runs the QMS algorithms, and produces the solution allocation, 
the utility of the solution, the runtime of the algorithm, and values for the metrics described in 
Section 5.2 as a comma separated file. The simulator simulates a single information space by 
taking scenarios generated by the generator and then running the intra-information space 
algorithms on each scenario. It simulates two information spaces by dividing the set of 
applications in a generated scenario evenly into two sets, each representing one of the 
information spaces. For each information space, the simulator runs the first-phase algorithms 
followed by the intra-information space second-phase algorithms. 

5.1.3 Statistical Package and Presentation of Results 

We used the R package [21] to analyze the data generated by the simulator, by passing the 
comma-separated files produced by the simulator as an input to the R package. To plot graphs 
we used the R package and rgl library [22] (a third-party extension to the R package). We plotted 
boxplots [3], lowess (regression line), and histograms using the R package. We plotted 3-D plots 
using the persp and persp3D functions of rgl.  

Boxplots (www.wikipedia.org/Boxplots) display the interquartile range (IQR), i.e., the range 
from the first quartile to the third in which the middle 50% of data values lie, as a box. A thick 
black line in the middle of the box represents the median. Vertical lines extending out from the 
box and ending in horizontal bars, called whiskers, represent the extent of the (non-outlier) 
observed values. Circles beyond the whiskers represent outliers, i.e., values above 1.5 × IQR + 
the upper quartile value or less than -1.5 × IQR below the lower quartile value. 

5.1.4 Experimental Design 

In general, for each of the experiments described in this report, we use the scenario generator to 
generate a sizable set of scenarios. For many of the intra-information space experiments, we 
generated scenarios with the following parameters: 3 QoS levels, 6 resources per QoS level, and 
110 total resources. We varied the number of applications. For each application set, we generated 
100 scenarios. For other experiments, we will describe the specific experiment design as we 
describe the experimental results. 
 
 
 

http://www.wikipedia.org/Boxplots
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5.2 Experimental Metrics 

5.2.1 Algorithm Metrics 

We collected the following metrics to compute the effectiveness (as a percentage of optimality) 
and the runtime of the QMS algorithms: 
 

• Percentage of Optimality: The optimal solution is the feasible solution with the 
highest utility. For the solution returned by any algorithm, we compute its percentage 
of optimality by dividing its utility by the utility of the optimal solution3. For a given 
scenario, we use the optimality reported by the Optimizing Brute Force algorithm as 
the baseline against which the optimality of all the algorithms are compared. 

• Runtime: Runtime is a measure of how fast an algorithm executes on a given 
hardware. We analyze worst case runtime and express it using Big O notation. We use 
the simulator to measure the runtime in our experiments. Although the absolute 
runtime depends on the hardware on which the algorithm is executed, the relative 
runtimes of various algorithms are comparable because we ran all our experiments on 
the same machine. 

5.2.2 Contention Metrics 

As part of our experiments, we evaluated the effect of contention on our algorithms, i.e., how 
resource rich or resource scarce the scenario is, and collected contention metrics to support this. 
Contention metrics measure the relation between the resources available and the resources that 
are requested in scenarios. We defined the following five contention metrics: 

 
1. Percent of infeasible solutions measures the total number of infeasible solutions out 

of the total number of possible solutions (leaf nodes in the search tree created by the 
Optimizing Brute Force algorithm). For example, the total number of possible 
solutions (i.e., possible allocations) for 10 applications and 3 QoS levels is 59,049 
solutions. If the Optimizing Brute Force algorithm finds only 200 solutions to be 
feasible, we compute the percent of infeasibility as (59049-200)/59049. The percent 
of infeasibility is directly proportional to the level of contention. That is, the higher 
the percentage of infeasible solutions, the higher the contention for resources in the 
scenario.  

2. Lowest percent of applications starved in any feasible solution measures the smallest 
number of applications that are starved (i.e., that do not receive resource allocations) 
in any of the feasible solutions. This metric is directly proportional to the level of 
contention. 

                                                           
3 Calculating the percentage of optimality requires knowing the optimal solution or, more specifically, the utility of the optimal 

solution. This requires running the Optimizing Brute Force algorithm to find the optimal solution, which limits the size and 
number of scenarios we can run. 
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3. Highest percent of applications requesting the most-shared resource measures the 
largest number of applications (out of the total number of applications) that request 
the same resource in a given scenario. This metric is directly proportional to the level 
of contention.  

4. Highest percent of resource requested by applications (in any QoS level) requesting 
the most-shared resource measures the highest amount of a resource requested in any 
possible (not necessarily feasible) allocation. For example, if a scenario has an 
allocation in which 500% (i.e., 5x of what is available) of a resource is requested and 
another scenario has no more than 95% of any resource requested, the first scenario 
indicates a more severe potential bottleneck than the second. This metric is directly 
proportional to the level of contention.  

5. Percentage of resources shared across the information spaces affects the size of the 
space over which the first phase algorithms operate. It also indicates a measure of 
contention for those resources shared between information spaces. 

5.2.3 Distribution of Scenarios 

Because metrics 3-5 relate specifically to attributes of scenarios, they are affected by our 
scenario generator more than specifically by attributes of our algorithms. In our experiments, we 
generated large numbers (typically 50,000) of scenarios randomly, with the intent to generate 
scenarios with a wide range of values for these metrics. In order to evaluate how well the 
scenarios we generated covered the space, we calculated metrics about the distribution of the 
randomly generated scenarios. Specifically, we examined the statistical distribution of the 
scenarios with respect to our contention metrics. As presented in more detail in [25], we 
expected and observed a normal distribution, in which there were more scenarios exhibiting 
medium amounts of contention than exhibiting extremely high or extremely low amounts of 
contention. We also calculated the distribution of scenarios to ensure that we had a sufficient 
number of data sets for the different values of our contention metrics against which we were 
comparing, thereby increasing our confidence in the results we observed. More details are 
presented in [25]. 

5.3 Percent of Optimality and Runtime of the Intra-Information Space 
Algorithms 

5.3.1 Optimizing Brute Force 

The Optimizing Brute Force algorithm always produces an optimal solution (i.e., 100% 
optimality). Hence, we use this as the baseline algorithm for measuring the effectiveness of the 
other algorithms. 

However, in the worst case Optimizing Brute Force runs in exponential time. Furthermore, the 
runtime grows exponentially as either the number of applications or the number of QoS levels 
within the applications increase. Figure 18 shows boxplots of the results for an experiment in 
which we generated scenarios with the number of applications varying from 10 to 110 by steps 
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of 10, with 100 scenarios at each step (see Section 5.1.3 for an explanation of boxplots). Each 
application had 3 QoS levels, and each QoS level used 6 resources selected randomly from a 
total of 110 scenarios. The runtime is good (near one second) until about 40-50 applications, 
after which the median runtime and the variance in runtime increase dramatically. The median 
runtime increases to about 70 seconds at 110 applications, with a worst case runtime of 150 
seconds. The increased variance is due to the difference in pruning possible from scenario to 
scenario. The scenarios with the highest runtime must result in little pruning, causing the 
Optimizing Brute Force algorithm to search nearly the entire space. In contrast, the best 
measured runtime (about 25 seconds for 110 applications – 6x faster than the worst case time) 
must be with scenarios that allow significant pruning (i.e., many infeasible solutions and/or 
quickly found high-utility solutions). 

Figure 19 depicts the increase in the runtime of Optimizing Brute Force when either the 
number of QoS levels or the number of applications increases. For this experiment, we generated 
scenarios that varied the number of QoS levels from 1 to 20 for each number of applications and 
that varied the number of applications from 1 to 20 for each number of QoS levels. The runtime 
is acceptable up to about 10 of either, then increases dramatically. 

5.3.2 Greedy Approximation 

Our experiments indicate that the Greedy Approximation algorithm produces solutions that are 
close to optimal, with a significant improvement in runtime over the Optimizing Brute Force 
baseline. The boxplot in Figure 20 represents an experiment in which we ran the Greedy 

 
Figure 18: Impact of varying number of applications on the runtime of the Optimizing Brute 
Force algorithm. 



 
 
 

  

 
 
 

41

Approximation algorithm on 50,000 scenarios, with 10 applications4, 3 QoS levels for each 
application, 3 resources per QoS level, and 30, 70, 110, 150, and 190 total resources (10,000 
scenarios for each level of total resources). We found that the median solution is 96% of optimal, 
and 75% of the solutions are over 90% of optimal or better, with all but the outliers producing 
solutions 80% optimal or better. The worst solution is 40% of optimal. 

Our experiments also indicate that contention adversely impacts the effectiveness of Greedy 
Approximation. Specifically, we observed the median optimality decline to 75% as the level of 
contention increases significantly. Figure 21 illustrates experiments run with the number of 
applications varying from 10 to 110, 3 QoS levels, 6 resources per QoS level, and 20 total 
resources. In these experiments, the median percentage of optimality varied between only 75-
85%, although the worst case percentage optimality is approximately the same as the experiment 
in Figure 20. 

The difference in the number of resources being used by each application and the number of 
resources available causes the experiments depicted in Figure 20 and Figure 21 to exhibit 
different contention characteristics. The experiments depicted in Figure 20 (selecting 3 resources 
from 30, 70, 110, 150, or 190 resources) had scenarios with the percentage of feasible solutions 
ranging from under 10% to 100%, whereas in the experiments depicted in Figure 21 (selecting 6 
resources from 20 available), all of the scenarios had fewer than 0.5% feasible allocations. This 

                                                           
4 We had to generate scenarios with a modest number of applications in order to have an optimality baseline against which to 

compare, since we have to run the Optimizing Brute Force algorithm on each of the 50,000 scenarios to get the optimal 
solution. 

 
Figure 19: Impact of simultaneously varying number of applications for a given QoS level and 
number of QoS levels for a given application when running the Optimizing Brute Force. 
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provides strong evidence that the level of contention affects the optimality of the Greedy 
Approximation algorithm. 

Effectiveness of the initial penalty optimizing factor. As described in Section 4.3, we enhanced 
the base Greedy Approximation algorithm with an initial penalty vector. We introduced the 
initial penalty vector to handle a set of scenarios (that we dubbed Greedy Achilles’ Heel 
scenarios) that produced sub-optimal solutions in the base algorithm. These scenarios have one 
or more high utility applications that request a significant amount of a highly contended 
resource. Since the base algorithm treated all resources equally and completely available at the 

 
Figure 20: Optimality of the Greedy Approximation algorithm on 50,000 scenarios with 10 
applications, 3 QoS levels per application, 3 resources per QoS level, and 30, 70, 110, 150, and 190 
total resources (10,000 scenarios each). 

 
Figure 21: Optimality of Greedy Approximation on 50,000 scenarios with a varying number of 
applications, 3 QoS levels per application, 6 resources per QoS level, and 20 total resources. 
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beginning, these applications would be greedily assigned resources and potentially starve a large 
number of other applications resulting in a significantly suboptimal solution. To prevent this, we 
enhanced the algorithm to perform an initial pass and assign an initial penalty to highly 
contended resources, making it cost more to request these resources.  

We conducted experiments to evaluate the effectiveness of the initial penalty enhancement. 
For this experiment, we generated Greedy Achilles’ Heel scenarios with a varying number of 
applications, 3 QoS levels for each application, and 6 resources selected randomly from 110 
resources for each QoS level. We varied the number of applications from 10 to 40 in steps of 10 
(again, the upper bound of 40 is so we could run the Brute Force algorithm to get the optimal 
solution against which to compare). For each number of applications, we had 100 scenarios on 
which we ran the Greedy Approximation algorithm both with and without the initial penalty. Our 
results, illustrated in Figure 22, show that the initial penalty improves the percent of optimality 
significantly for this class of scenarios. Without the initial penalty, Greedy Approximation 
provides a low median percent of optimality ranging from approximately 30% to approximately 
42% (Figure 22a). When we add the initial penalty to Greedy Approximation, the median percent 
of optimality on the same set of scenarios improved to a range of 75% to 85% (Figure 22b). 
Notice that the percent of optimality declines as the number of applications increase in both 
cases, due to an increase in contention (more applications competing for the same number of 
resources).  

Runtime performance of Greedy Approximation. We evaluated the runtime of Greedy 
Approximation in order to examine the feasibility of using Greedy Approximation in information 
spaces with large numbers of applications. We analyzed the worst-case runtime and conducted 
experimental evaluations to measure the runtime.  

Pseudocode for the Greedy Approximation algorithm follows: 
 
 

  
Figure 22: Percentage of optimality of Greedy Approximation for Greedy Achilles’ Heel scenarios 
(a) without the initial penalty optimization (b) with the initial penalty optimization. 
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1:  initializeList(cp+sl-List) 
2:  while(cp+sl-List not empty) { 
3:    next = find_max_utility(cp+sl-List); 
4:    addToUsedResources(next.resourceUsage) 
5:    removeChosenCP's Other Service Levels 
6:    removeInfeasible(cp+sl-List) 
7:  } 
 
Step 1 is the creation of the initial penalty vector, and takes a single pass through q*a 

elements, where q is the number of QoS levels and a is the number of applications. The loop 
bounded by step 2 and 7 is executed at most a times, since step 5 removes at least q elements 
from the list each time through (the list begins with q*a elements). Step 6 could remove more, so 
the actual number of times through the loop could be fewer than a times. Steps 3 and 4 are linear 
time operations on the current list of applications × QoS levels and resources, respectively. 

Therefore, the worst case runtime is equal to (aq) + a(arq), or O(a2qr + aq), where: 
 

• a is the number of applications, 
• q is the number of service levels, and 
• r is the number of resources 

 
Furthermore, notice that the operation in step 6 affects the runtime of future iterations. If step 

6 prunes a significant number of infeasible allocations from the cp+sl-List, then the number of 
times through the loop at step 2 is significantly reduced. In scenarios where 100% of solutions 
are feasible, step 6 will never remove anything and the algorithm will run in worst case time. In 
scenarios where step 6 removes most of the elements because many allocations are infeasible, 
the algorithm will run much faster.  

From this analysis, Greedy Approximation's best runtime happens in scenarios with extremely 
high contention (step 6 does a lot), and its worst-case runtime is in scenarios with low contention 
(step 6 does nothing). Since we showed above that Greedy Approximation produces better 
solutions (in terms of percentage of optimality) when contention is low, this means that Greedy 
Approximation is fastest when it does the worst job and is slowest in those scenarios in which it 
comes up with near optimal solutions. 

Regardless, in worst case its runtime is polynomial or, more precisely, quadratic in the 
number of applications. 

We also evaluated the runtime by running experiments that varied the number of applications 
and the number of resources, the two scenario attributes that we believed might scale to large 
numbers in realistic scenarios. 

For the experiment with varying number of applications, we increased the applications from 
10 to 300 in steps of 10, with 100 scenarios for each discrete number of applications. Each 
application had 3 QoS levels, and each QoS level used 6 resources selected randomly from a 
total of 110 resources. As expected from the analysis above, we observed that the runtime of 
Greedy Approximation increases polynomially with the increase in the number of applications 
(Figure 23). As comparison, executing the Greedy Approximation algorithm on a randomly 
generated scenario with 110 apps took less than 0.10 seconds versus 60 seconds for the 
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Optimizing Brute Force algorithm. Figure 23 also shows that the optimization to add the initial 
penalty, which greatly improves the optimality of the algorithm for some scenarios, impacts the 
runtime by a constant multiplicative factor, due to the initial linear pass through the 
application×QoS level list. We observed subsecond runtimes for up to hundreds of applications 
(0.6 seconds for 300 applications, 0.3 seconds for 300 applications without the initial penalty 
optimization). 

Figure 24 illustrates the results of an experiment to evaluate the effects of varying the number 
of resources. In this experiment, we randomly generated scenarios with 100 applications, 3 QoS 
levels per application, 3 resources per QoS level, and total resources varying from 30 to 180, in 
steps of 10. We had 100 scenarios for each discrete number of resources. Our results indicate that 
the runtime of Greedy Approximation grows approximately linearly as the number of resources 
increases, as shown in Figure 24, confirming what we expected from our analysis above. 

5.3.3 MMKP 

To evaluate the percent of optimality of the MMKP algorithm, we used the experiment described 
in Section 5.1.4. We generated scenarios with the number of applications varying from 10 to 110 
by steps of 10, with 100 scenarios at each step. Each application had 3 QoS levels, and each QoS 
level used 6 resources selected randomly from a total of 110 scenarios.  

Our MMKP algorithm normalized and approximated the total resources used by an application 
from 0 to 1 and iterated over them by a step of 0.1. This results in resources being allocated in 
tenths of their total amount available. This results in fast scalable runtime for the algorithm. As 
shown in Figure 25b, the runtime for MMKP is linear and scales well, with 300 applications 
taking about 0.3 seconds. 

 

Figure 23: Runtime of the Greedy Approximation algorithm as the number of applications 
increase. (a) For the Greedy Approximation algorithm without initial penalty. (b) Greedy 
Approximation algorithm with initial penalty. 
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However, the results of the experiments also indicate that MMKP (with 0.1 quantization) 
provides a median of only 35% optimality. As described in Section 4.4, dynamic programming, 
upon which MMKP is based, is pseudo-polynomial (i.e., polynomial in the value of its input). A 
strict MMKP dynamic programming algorithm might use the actual value of the amount of 
resources (instead of normalizing to a scale of 0-1) and a step of 1 (or whatever units the 
resources could be allocated in) for all the resources, but in doing so would execute closer to 
exponential time than  polynomial time. The choice of a quantization is necessary to make the 
algorithm behave better than an exponential time algorithm. While 0.1 quantization is very 
coarse grain (e.g., if an application and QoS level requests 3% of a resource, it will get either 0% 
or 10%), we expect a finer grained quantization to significantly impace execution time 
performance. 

 
Figure 24: Runtime of the Greedy Approximation algorithm as the number of resources increases. 

 
Figure 25:  (a) Percent of optimality of the MMKP algorithm. (b) Runtime of the MMKP 
algorithm. 
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Figure 26 shows a comparison of MMKP with 0.01 quantization (fac100MMKP), MMKP 
with 0.1 quantization (MMKP) and the Greedy Approximation algorithm (greedy). As expected, 
the runtime for MMKP with 0.01 quantization is approximately 10x that of the MMKP with 0.1 
quantization (over 3 seconds versus 0.3 seconds for 300 applications). At these numbers of 
applications, the execution time for MMKP with 0.1 quantization is similar to that of the Greedy 
Approximation. Because of this and the significantly better optimality of the Greedy 
Approximation algorithm, we did not continue developing or evaluating the MMKP algorithm. 

5.4 Percent of Optimality and Runtime of the Two-Phased Algorithms 

In these experiments, we analyzed the percent of optimality and runtime of the two-phased 
algorithms, which each run one of the inter-information space algorithms (i.e., Dynamic 
Approximation, Even Splitter, or Weighted Splitter) in the first phase and an intra-information 
space algorithm (i.e., Greedy Approximation or Optimizing Brute Force) as the second phase. 
All the experiments described from here on use the experimental design described in the 
following section, unless stated otherwise.  

5.4.1 Experimental Design  

We designed experiments to run the algorithms on a large enough number of randomly generated 
scenarios to ensure that we would have a significant number of scenarios exhibiting various 
characteristics (e.g., a varying amount of resource contention, a varying percentage of feasible 
allocations, and a varying number of resources shared between information spaces).  

The three inter-information space algorithm choices for the first phase and the two intra-
information space algorithm choices for the second choice result in six total two-phased 
algorithms as the experimental cases: 
 

 
Figure 26: Comparison of the runtime of MMKP with 0.01 quantization, MMKP with 0.1 
quantization, and the Greedy Approximation algorithm. 
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1. Even Splitter-Optimizing Brute Force 
2. Weighted Splitter- Optimizing Brute Force 
3. Dynamic Approximation- Optimizing Brute Force 
4. Even Splitter-Greedy Approximation 
5. Weighted Splitter-Greedy Approximation 
6. Dynamic Approximation-Greedy Approximation 

 
As two baselines against which to compare, we used “centralized” versions of both the 

Optimizing Brute Force and the Greedy Approximation algorithms. The centralized Optimizing 
Brute Force provides the optimal allocation against which to compare, while the centralized 
Greedy Approximation provides a comparison measure of the percentage optimality and speed of 
a centralized algorithm. 

Our experiments consisted of executing the algorithms on 10,000 randomly generated 
scenarios. Each scenario consists of ten applications, each with three service levels (high, low, 
and starvation), with each service level utilizing three resources.5 The scenario generator varies 
the resources used by each service level, the amount of each resource used by each service level, 
and the utility associated with each service level.  

We conducted the experiments using a simulator that takes each scenario and divides the 
applications between two information spaces, putting half (i.e., five) in each. It then runs the 
first-phase algorithms to divide the shared resources followed by the second-phase algorithms for 
each information space to choose an allocation. It also runs the two centralized algorithms on 
each information space to gather the baseline metrics. 

The number of applications sharing available resources and the percentage of resources shared 
across information spaces varied from scenario to scenario, but are affected not only by the 
factors that the scenario generator varies (i.e., resources used by each service level and the 
amount of each resource used by each service level) but also by the total number of resources 
available. To attempt to get good representative coverage over a variety of possible scenario 
configurations, we generated 10,000 scenarios each for a varying number of total available 
resources: 30, 70, 110, 150, and 190 resources. This results in a total of 50,000 scenarios. 

5.4.2 Percent of Optimality of the Two-Phased Algorithms 

Figure 27a illustrates the results for the experiment described above for the two-phase algorithms 
with Optimizing Brute Force as the second phase (algorithms 1-3). Figure 27b illustrates the 
results for the experiment described above for the two-phase algorithms with Greedy 
Approximation as the second phase (algorithms 4-6). Our results demonstrate that Dynamic-
Approximation as the first-phase provides the best percent of optimality with either Optimizing 
Brute Force or Greedy Approximation as the second phase. Specifically, Dynamic 
Approximation provides a median of 100% of optimality when the Optimizing Brute Force 
                                                           
5 We chose the number of applications (a) and service levels (q) to support running a large number of scenarios against the 

centralized Optimizing Brute Force algorithm baseline, which takes O(qa) to run. Ten applications with three service levels 
results in a search space of 59,049 possible allocations. Twenty applications with the same number of service levels drive the 
search space up to over 3 billion possible allocations. 
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algorithm is used as the second-phase algorithm (Figure 27a) and a median of 96% of optimality 
when Greedy Approximation is used as the second phase (Figure 27b). The Even Splitter and 
Weighted Splitter algorithms provide medians of 92% percent of optimality when Optimizing 
Brute Force is used as their second phase (Figure 27a) and nearly 90% when Greedy 
Approximation is used as the second phase. Moreover, the percent of optimality of the two-phase 
algorithm with Dynamic Approximation as the first-phase with either of the second phases is 
nearly equivalent to the percent of optimality of the centralized approximation algorithm, 
Greedy-All (running the Greedy Approximation algorithm with all the applications in all the 
information spaces). 

5.4.3 Runtime of the Two-Phased Approximation Algorithm 

This section presents an evaluation of the runtime of the Dynamic Approximation-Greedy 
Approximation algorithm, which is likely to be the best choice for many scenarios because (a) its 
first phase outperforms the other choices and (b) its second phase runs in quadratic time versus 
the exponential time of the alternative. First, we analyze the worst case runtime of the algorithm. 
Then, we show the results of experimental evaluations of the runtime in which we vary both the 
number of applications and number of resources.  

Analysis of the runtime. In Section 4.5.1.1, we determined that the Dynamic Approximation 
first phase takes ar + aqr + a'2qr, where a is the number of applications, q is the number of QoS 
levels, r is the number of resources, and a' ⊆ a is the subset of applications that share resources 
between the information spaces. The Greedy Approximation second phase takes amax

2qr time, 
where amax = max(a1, …, aI) and ai  is the number of applications in information space i, for 
i=1..I. That is, the second phase takes as long as the largest information space, i.e., the 
information space with the largest number of applications. 

In a representative case in which, say, 10% of the total applications share resources across 
information spaces and the applications are evenly divided between the information spaces, the 
runtime would be ar + aqr + (.1a)2qr +(a/I)2qr. Which term dominates depends on which is 
larger, the number of applications sharing resources across the information spaces or the number 
of applications in each information space. 

 
Figure 27: Comparison of percent of optimality of the two-phase algorithms with (a) Optimizing 
Brute Force as the second phase and (b) Greedy Approximation as the second phase. 
(Approximate refers to the Dynamic Approximation first phase.) 
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In the worst case, all of the applications would share resources across information spaces (a' = 
a) and applications would not be evenly spread across the information spaces (one information 
space would have a-(I-1) applications and each of the rest of the information spaces would have 
one application each). In this case, the first phase essentially runs a centralized Greedy 
Approximation algorithm and the second phase is superfluous. The runtime in this worst case is 
as follows: 
 
 O(ar + aqr + a2qr + (a-I+1)2qr) = O(ar + aqr + 2a2qr) = O(ar + aqr + a2qr) (10) 
 

Experimental evaluation of runtime. Even though we just showed the centralized Greedy 
Approximation algorithm should perform better than Dynamic Approximation-Greedy 
Approximation in the worst case, we expect in the general case that the Dynamic 
Approximation-Greedy Approximation algorithm should run faster than Greedy-All. This is 
because we expect in the usual case a' should be less than a and that applications should be well 
distributed among information spaces. 

We ran experiments to test the runtime of the two-phase algorithm as the following variables 
vary: 

 
1. The number of total applications (and therefore the number of applications in each 

COI) 
2. The number of resources 

 

5.4.3.1 The Effect on Runtime of Varying the Number of Total Applications 
Our analysis above showed that the number of total applications should significantly impact the 
runtime of the centralized and two-phase algorithms. However, we hypothesize that in the usual 
case where only a subset of applications share resources across information spaces and the total 
number of applications are well distributed between information spaces, that an increase in the 
total number of applications should impact the centralized Greedy-All algorithm more 
significantly than the two phase Dynamic Approximation-Greedy Approximation algorithm. In 
other words, we expect the two-phase approximation algorithm to scale better than the 
centralized version. 

We tested our hypothesis by conducting an experiment in which we varied the total number of 
applications. We generated scenarios that varied the total number of applications from 20 to 
2000, with 100 random scenarios for each data point. We forced an even distribution of 
applications between two information spaces (I=2) by dividing the applications in half, with each 
information space having half of the total number of applications (i.e., 10 to 1000 applications 
each). We set the scenario generator parameters to 3 QoS levels per application, 3 resources used 
per QoS level, and 110 total number of resources. The scenario generator randomly generated the 
utility value for each QoS level, the specific resources (from the 110 available) used by each 
QoS level, and the amount of each resources used. The choice of 110 available resources (a fairly 
large number compared to the number of resources, 3, used by each application) makes it more 
likely that the number of applications sharing resources across the information spaces is a subset 
of the total number of applications (i.e., the more available resources to choose from, the less 
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likely that two applications will share resources). We plotted the median runtime for running the 
algorithms on each set of scenarios. 

The results (Figure 28) indicate that as the total number of applications increases, the median 
runtime of both the Dynamic Approximation-Greedy Approximation algorithm (shown with blue 
line and circles) and the Greedy-All algorithm (shown with red line and squares) increase. The 
centralized Greedy-All algorithm outperforms the two-phase algorithm slightly at low numbers 
of total applications (up to a few hundred per information space). As the number of applications 
increase, the runtime of the two-phase algorithm increases at a much lower slope than the 
centralized algorithm, indicating that the two-phase algorithm scales much better in terms of 
number of total applications. Note that this experiment was conducted with two information 
spaces. The difference between the slopes would be even larger with more information spaces. 

5.4.3.2 The Effect on Runtime of Varying the Number of Total Resources 
Because of the linear contribution of the r term to equation (10), we hypothesize that the runtime 
of Dynamic Approximation-Greedy Approximation should change linearly as the total number 
of resources changes. 

To test this hypothesis, we conducted an experiment in which we varied the total number of 
resources. As in the experiments above, we used the scenario generator simulation software to 
generate random scenarios varying the total number of resources from 10 to 150 in steps of 10. 
We set the scenario generator parameters to 50 applications, 3 QoS levels per application, and 3 
resources used per QoS level. We divided the applications into two information spaces (I=2) 
such that each information space had half of the total number of applications (i.e., 25 
applications). We used 5000 scenarios for each experimental data set and plotted the results as 
boxplots. The results in Figure 29 indicate an approximate linear slope for the median (thick dark 
line) runtime as the number of resources increases. 

 

 

Figure 28: Median runtime of Dynamic Approximation-Greedy Approximation (Approx+Greedy) 
when we varied the number of applications from 20 to 2000. The centralized approximation 
algorithm, Greedy-All, is shown as a baseline. 
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5.4.4 Percentage of Optimality under Varying Levels of Contention for the Two-Phased 
Algorithms 

Our earlier experimental results on Greedy Approximation indicated that the level of contention 
adversely impacts its percent of optimality. This motivated us to conduct experiments to examine 
how changes in the level of contention impact the percent of optimality and runtime of the two-
phased algorithms.  

For evaluating the percentage of optimality, we used the experiment described in Section 
5.4.1, which utilized 50,000 randomly generated scenarios. We extracted the contention metrics 
defined in Section 5.2.2 from the scenarios, allowing us to identify subsets of the scenarios 
exhibiting various levels of contention. Plotting the percentage of optimality for these subsets 
allowed us to identify how the contention metric affects the optimality of the algorithms. In the 
following section, we present and discuss these results. 

5.4.4.1 Contention Metric 1 – Percent of Infeasible Solutions 
An allocation is considered infeasible if the amount of resource requested (for the applications 
and QoS levels in the allocation) exceeds the amount available for any of the requested 
resources. Therefore, a high percentage of infeasible allocations implies a high level of 
contention for resources. Figure 30 illustrates a regression graph showing the trend of the 
percentage of optimality as the percentage of infeasible solutions increases (and therefore 
contention increases). The Dynamic Approximation first phase provides the best percent of 
optimality with either Optimizing Brute Force or Greedy Approximation as the second phase. 
Moreover, Dynamic Approximation performs better in contentious environments when 
contrasted with Even Splitter to Weighted Splitter algorithms. As the percentage of infeasible 
solutions increase, the Dynamic Approximation-Optimizing Brute Force and Dynamic 
Approximation-Greedy Approximation algorithms eventually start to decline in percentage of 
optimality, but less than the other two-phase algorithms. Furthermore, they maintain a trend of 
90% optimality or better and perform nearly as well as the centralized Greedy-All. 

 
Figure 29: Runtime of the Dynamic Approximation-Greedy Approximation algorithm as a function 
of varying the number of resources. 
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5.4.4.2 Contention Metric 2 – Lowest Percent of Applications Starved in any Feasible 
Solution  

When there is significant contention for resources, it is possible that only some of the 
applications requesting the contended resources can be run. All others are starved, i.e., are 
allocated no resources and therefore cannot run. This metric looks at the feasible allocations and 
determines the lowest percentage of applications starved in any of them.  

Figure 31 illustrates the regression graph showing the trend of the percentage of optimality as 
the lowest percentage of starved applications increases (and therefore contention increases). As 

 

Figure 30: Using the “percent of infeasible solutions” metric for comparing percent of optimality of 
various inter-information space first phases with (a) Optimizing Brute Force as the second phase, 
and (b) Greedy Approximation as the second phase. 

 

Figure 31: Using the “lowest percent of applications starved in any feasible solution” metric for 
comparing percent of optimality of various inter-information space first-phases with (a) Optimizing 
Brute Force as the second phase, and (b) Greedy Approximation as the second phase. 
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the percentage of starved applications increases, the trend of all the algorithms is to decrease in 
percentage of optimality. However, the two-phase algorithms with the Dynamic Approximation 
first phase decrease much more gradually and track the centralized algorithm well. Furthermore, 
they perform significantly better than the other two-phase algorithms when contention is higher, 
maintaining a trend of approximately 85% of optimal or better even when 60% or more of the 
applications are starved. In contrast, the two-phase algorithms with the Even Splitter and 
Weighted Splitter first phase trend downward to approximately 40% of optimal as the percentage 
of starved applications increases. 

5.4.4.3 Contention Metric 3 – Highest Percent of Applications Requesting the Most-
Shared6 Resource 

This metric looks at the largest number of applications requesting a single resource. All of the 
algorithms decline in performance as the percentage of applications requesting the most shared 
resource increases. Figure 32 illustrates the regression graph showing the trend of the percentage 
of optimality as the highest percentage of applications requesting the most shared resource 
increases (and therefore contention increases). As the percentage of applications requesting the 
most-shared resource increases, the trend of all the algorithms is to decrease in percentage of 
optimality. However, the two-phase algorithms with the Dynamic Approximation first phase 
decrease much more gradually and track the centralized algorithm well. Furthermore, they 
perform significantly better than the other two-phase algorithms when contention is higher, 
maintaining a trend of approximately 85% of optimal or better even when as many as 70% of the 
applications request the most-shared resource. In contrast, the two-phase algorithms with the 
Even Splitter and Weighted Splitter first phase trend downward to approximately 60% of optimal 
as the percentage of applications requesting the most-shared resource increases. 

  
Figure 32: Using “highest percent of applications requesting a resource” metric for comparing 
percent of optimality of various inter-information space first-phases with (a) Optimizing Brute 
Force as the second phase, and (b) Greedy Approximation as the second phase. 
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5.4.4.4 Contention Metric 4 – Highest Percent of Resource Requested by Applications  
While Figure 32 illustrates the effects of many applications requesting a specific resource, it does 
not take into account how much of the resource they collectively request. Therefore, this metric 
looks at the highest amount of a resource requested in any possible allocation. All of the 
algorithms decline in percentage of optimality as the highest percentage of resource requested by 
applications requesting the most-shared resource increases.  

Figure 33 illustrates the regression graph showing the trend of the effect of the amount of a 
single, most requested (by quantity requested) resource on the optimality of the algorithms. The 
x-axis in the graphs represent the amount requested of the most requested resource, varying from 
less than half of the resource capacity requested (0.5x) to more than 5x (i.e., 500%) of the 
resource capacity. As would be expected, when less than the resource capacity (< 1.0) is the most 
requested, i.e., the scenario represents a resource rich environment, all algorithms trend toward 
optimal or near optimal solutions. As the amount requested increases, the optimality declines, 
although the algorithms with the approximation first phase still trend toward near optimal results, 
a gradual decline, and results close to the centralized algorithm, with a trend towards about 90 
percent optimality.7  

 
 

                                                                                                                                                                                           
6 The resource shared by the most number of applications. 
7  R’s lowess function computes regression graphs that smooth out the scattered plots of the actual values. Since the slope of the 

Even Splitter and Weighted Splitter plots are so steep, it smoothes out to graphs whose leftmost points trend above 100% 
optimality in Figure 33, even though none of the actual values are. 

 
Figure 33: Using “highest percent of resource requested by applications (in any QoS level) 
requesting the most-shared resource” metric for comparing percent of optimality of various inter-
information space first-phases with (a) Optimizing Brute Force as the second phase, and (b) Greedy 
Approximation as the second phase. 
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5.4.4.5 Contention Metric 5 – Percentage of Resources Shared Across the Information 
Spaces 

Figure 34 illustrates the regression graphs showing the trend in percentage optimality as the 
percentage of resources shared between information spaces increases. The two algorithms that 
use the Dynamic Approximation first phase perform very well, trending toward a gradual 
decrease in percentage optimality, contrasted with the more drastic drop in the other two-phase 
algorithms. Dynamic Approximation-Optimizing Brute Force and Dynamic Approximation-
Greedy Approximation perform close to the centralized algorithm and indicate a trend toward 
approximately 90% optimality as the percentage of shared resources increases to a significant 
amount. 

5.4.5 Comparison of the Contention Metrics 

The contention metrics can be grouped based on how they are collected. The first set of these 
metrics, specifically 

 
1. Percent of infeasible solutions 
2. Lowest percent of applications starved in any feasible solution 

 
requires examining the entire space of possible solutions (e.g., by running the Optimizing Brute 
Force algorithm), a potentially exponential search. They are infeasible to collect in general. 
However, the rest of the metrics, namely 

 
3. Highest percent of applications requesting the most-shared resource 

 
Figure 34: Using “percentage of resources shared across the information spaces” metric for 
comparing percent of optimality of different inter-information space algorithms run as the first-
phase algorithms with (a) Optimizing Brute Force as the second phase, and (b) Greedy 
Approximation as the second phase algorithms 
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4. Highest percent of resource requested by applications (in any QoS level) requesting the 
most-shared resource  

5. Percentage of resources shared across the information space 
 
can be collected by a linear or polynomial search of the algorithm inputs.  

Put another way, metrics 1 and 2 are measures of the solution space, while metrics 3, 4, and 5 
are measures of the scenarios that are inputs to the SRM. This means that metrics 3, 4, and 5 are 
more susceptible to reflecting characteristics of the scenario generator, especially when 
comparing these contention metrics against the optimality of the algorithms. Namely, it is 
possible to craft specific scenarios that would exhibit high contention by metric 3, 4, or 5 and 
high optimality and other, different specific scenarios that exhibit low contention by these 
metrics but low optimality, both counter to the results that we saw in the graphs above. 

For example, a scenario containing control points with low utility QoS levels that use a large 
amount of a particular resource and other QoS levels with higher utility but much lower resource 
usage, should produce highly optimal solutions even though metric 4 would report high 
contention. Conversely, a second scenario could have very few feasible allocations but with no 
resource requested more than a few percentage points above what is available. This second 
scenario would produce a significantly lower value for metric 4, but might produce suboptimal 
solutions.  

Notice that metrics 1 and 2 are not susceptible to this type of manipulation of scenarios, 
precisely because they are produced from the solution space and not the scenario attributes. In 
our experiments, we purposely generated a large number of scenarios randomly to cover a wide 
representative range of characteristics and to avoid generating ones that specifically exhibited 
any specific characteristics. [25] examines the distribution of the scenarios. 

5.4.6 Runtime of Algorithms under Varying Levels of Contention 

To measure the runtime of the Dynamic Approximation-Greedy Approximation algorithm, we 
ran an experiment running the algorithm on a set of scenarios, varying the number of 
applications in the scenarios, and plotted the runtime against the levels of contention exhibited 
by the scenarios. 

We used the scenario generator to generate sets of 5000 random scenarios each with the 
number of applications varying from 20 to 100, in steps of 20, for a total of 25,000 scenarios. We 
set the scenario generator parameters to 3 QoS levels per application, 3 resources used per QoS 
level, and 110 total resources.  

We computed the contention metrics above for each scenario and plotted a regression line for 
the runtime of each set of scenarios against the level of contention for that set. The number of 
scenarios and applications makes it unreasonable to gather the first two contention metrics, so we 
limited this experiment to the contention metrics that can be gathered in linear or polynomial 
time, i.e., metrics 3, 4, and 5.  

Figure 35 illustrates the effect on runtime of changes in metrics 3 and 4, namely, 
 

• Highest percent of applications requesting the most-shared resource 



 
 
 

  

 
 
 

58

• Highest percent of resource requested by applications (in any QoS level) requesting 
the most-shared resource  

 
Changes in these metrics do not appear to significantly affect the algorithm’s runtime. As the 

percentage of applications requesting the most shared resource increases, the runtime remains 
approximately unchanged (Figure 35a). Likewise, as the amount requested of the most requested 
resource increases, the runtime also remains approximately unchanged (Figure 35b). The 
declining ranges of the plotted measurements indicate that as the number of applications 
increases, the percentage requesting any specific resource declines. 

Figure 36 illustrates the effect on runtime of changes in metric 5, i.e., the percentage of 
resources shared across the information spaces. As the value of this metric increases, the runtime 
increases. However, its impact on the runtime for scenarios with fewer applications is greater 
than on the runtime for scenarios with more applications. This is because the value of this metric 
affects the runtime of the first phase of the two-phase algorithm, i.e., the space of applications 
the first phase runs over gets larger as the value of this metric increases. As the number of total 
applications increases, the second phase comes to dominate the algorithm’s runtime and the 
impact of an increase in the number of shared resources impacts the total runtime by a lesser 
amount. 

5.4.7 Analyzing the Outliers  

While the results of our evaluation of the percentage of optimality of the two-phase approach 
presented in Section 5.4.2 show good results for many of the scenarios, there were outliers8 in the 
                                                           
8 As explained in Section 5.1.3, outliers in boxplots represent values that are above 1.5 × IQR + the upper quartile value or less 

than -1.5 × IQR below the lower quartile value. They are a visualization technique for displaying values that are significantly 
distant from the cluster of majority of the values. Although outliers can be above or below the IQR, the outliers that we are 
concerned with are those that lie below the first quartile, as they represent significantly suboptimal solutions. 

 

Figure 35: Runtime of Dynamic Approximation-Greedy Approximation as a function of: a) Highest 
percent of applications requesting the most-shared resource; b) The amount of the most shared 
resource requested by those applications. 
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graphs. Specifically, Figure 37 shows that 9.4% of scenarios produced solutions that are 
considered outliers when Optimizing Brute Force was used for the second phase, and 6.7% of 
scenarios produced outliers when Greedy Approximation was used for the second phase, from a 
total of 50,000 scenarios. The number of outliers motivated us to examine the cause that makes 
the algorithms produce relatively sub-optimal (i.e., outlier) solutions for some scenarios.  

Because the results presented in Section 5.4.4 indicated a decline in percentage optimality as 
levels of contention increase, we started by looking at characteristics that contribute to higher 
contention, testing the hypothesis that high levels of contention are a cause of sub-optimal 
allocations.  

To examine the contribution of levels of contention on the production of outliers, we 
examined a subset of the experiments that we conducted which exhibited varying levels of 
contention. Specifically, we examined the scenarios with 10 applications, 3 QoS levels, and 3 
resources per QoS level with total resources varying among 30, 70, and 110 resources. We 

 

Figure 36:  Runtime of Dynamic Approximation-Greedy Approximation as a function of 
percentage of resources shared across the information spaces 

OutliersOutliers

 
Figure 37: Examining the outliers of the two-phase algorithms with (a) Optimizing Brute Force as 
the second phase and (b) Greedy Approximation as the second phase. 
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generated 10,000 scenarios for each level of total resources, which provides us a good basis for 
representing different levels of contention. The scenarios with a total of 30 resources were highly 
contentious as the applications had to choose three out of 30 resources. In this case the 
contention was high because the chance of multiple applications requesting the same three 
resources from a total of 30 was high relative to those that had a total of 70 or 110 from which to 
choose three. As we increased the total number of resources from 30 to 70 to 110, the level of 
contention decreased.  

From these sets of experiments, we calculated the median percent of optimality, length of 
(number of scenarios in) the IQR9, and the percent of outliers and extreme outliers10.  

The results for the Dynamic Approximation-Greedy Approximation algorithm are summarized 
in Table 3. As expected, we observed that as the level of contention decreased (from 30 total 
resources to 110 resources), the median percent of optimality increased. The percent of outliers 
and extreme outliers also increased. However, the length of the IQR decreased, meaning that the 
50% of solutions from the first to the third quartile were more tightly bunched around the 
median. This means that the increase in the outliers is likely to be artificial, indicating the general 
increase in percentage of optimality and smaller bunching of results around the improved 
optimality, but the improved percentage optimality not extending to all the scenarios. This 
observation is supported by the fact that the percentage optimality of the first outlier also 
increases as contention decreases, from 61.15%, to 75.75%, to 80.02%, and the percentage 
optimality of the first extreme outlier increases from 40.71%, to 62.02%, to 68.40%.  

Furthermore, the level of contention is not an accurate predictor of the minimum percentage of 
optimality. While the worst solution in the most highly contentious set (30 resources) is only 
11.5% of optimal, which is worse than the worst solution in either of the less contentious sets, 
the least contentious set (110 resources) actually produces a worse solution than the worst 
observed solution of the medium contentious set (70 resources). We observed similar results for 
the Optimizing Brute Force second phase.  

 
Table 3: Trend in median percent of optimality, IQR, and outliers as the number of total resources 
increases from 30 to 70 to 110 in the two-phase Dynamic Approximation-Greedy Approximation 
algorithm. 
Approx+Greedy 30 Resources 70 Resources 110 Resources 
Min % of optimality 11.49425 30.16701 24.48759 
Median % of optimality 88.95260 94.66913 96.15848  
IQR 13.62601 9.149613 7.744562 
1st Outlier 61.14584 75.74697 80.02162 
# of Outliers 168  461 642 
% of Outliers  0.336 0.922 1.284 
1st Extreme Outlier 40.70684 62.02256  68.40478 
# of extreme outliers 4 251  495 
% of Extreme Outliers 0.008 0.502  0.99 
 
                                                           
9 The Interquartile Range in which the middle 50% of values (from the first to the third quartile) lie, as explained in Section 5.1.3. 
10 Whereas outliers lie 1.5 times the size of the IQR from the upper or lower quartile value, extreme outliers lie 3 times the IQR 

from those values. 
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In order to test whether we could use our contention metrics to predict how the algorithms 
would perform, we divided the scenarios into two groups: the scenarios that result in greater than 
or equal to 85% optimality and the scenarios that result in less than 85% optimality. Then we 
examined the value of the metrics for each of these sets, as shown in Table 4. Most of the values 
for these two sets are too close to consider as a predictive measure, except for Metric 1 (median 
% of feasible solutions), which has a wide difference for the two sets (42% versus 12% and 40% 
versus 15%). However, as shown in Figure 38, the ranges of values for this metric overlaps 
significantly between the two sets, meaning that knowing the value of this metric for any given 
scenario does not provide an indication of in which set it is. Therefore it appears as if the 
contention metrics are not useful for predicting how well either algorithm will perform on a 
given scenario. That leaves only the total number of applications in a scenario, which affects the 
runtime, to decide whether to use Optimizing Brute Force or Greedy Approximation as the 
second phase.  
 
Table 4: Comparison of metric values for scenarios in two sets based on percentage of optimality. 

Approx+Greedy (50,000 total scenarios) Approx+BF (50,000 total scenarios) 
Metric ≥ 85% (45,538 

scenarios) 
< 85% (4462 
scenarios) 

≥ 85% (45,477 
scenarios) 

< 85% (4523 
scenarios) 

1. Median % of 
feasible solutions 42% 12% 40% 15% 

2. Highest % of 
non-starved 
applications 

100% 90% 100% 90% 

3. Max % of apps 
requesting the most 
shared resource 

20% 30% 20% 30% 

4. Max amount 
requested of most 
shared resource 

1.5x 1.8x 2.4x 6.0x 

5. % of resources 
shared across the 
information spaces 

2% 7% 2% 6% 
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Figure 38: Overlap in two categories (≥ 85% and < 85%) of scenarios for the values for percent of 
feasible solutions for (a) Dynamic Approximation-Greedy Approximation and (b) Dynamic 
Approximation-Optimizing Brute Force. 
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6 The Prototype System Resource Manager Version 2 

We developed an enhanced prototype of the QMS System Resource Manager that utilizes the 
new QoS management algorithms. The enhanced SRM allocates QoS levels and resources 
associated with these QoS levels to applications that share resources either within an information 
space or across multiple information spaces. The enhanced SRM prototoype employs a two-
phased algorithm for multiple information spaces. Based on the results of the experimental 
evaluations described in Section 5, we prototyped the Dynamic Approximation algorithm as the 
inter-information space first phase, and the Optimizing Brute Force and Greedy Approximation 
algorithms as options for the intra-information space second phases. The resulting SRM 
prototype is able to allocate QoS levels to large numbers of applications across multiple 
information spaces, in a dynamic environment where new applications join, existing applications 
leave, the roles and priorities of applications change, and the priorities of information spaces 
change. 

In the following sections, we describe the enhanced System Resource Manager and other 
prototype components that we developed to work with it.  

6.1 The Enhanced SRM Prototype 

The enhanced SRM uses the two-phased approach to QoS allocation for multiple information 
spaces described in Section 4.5 and illustrated in Figure 39. The first phase runs an inter-
information space algorithm to identify the resources shared between information spaces and 
divide them between the information spaces. The resources allocated by the first phase become 
the total resources available to each information space for the second phase. An intra-information 
space algorithm is then run in each information space (constrained by the results of the first 
phase) to allocate QoS to the applications in that information space.  

The following describes the primary features of the enhanced SRM: 
 

Information Space 1 Information Space 2

a4
a5

R3

a1

a2
a3

First phase

Second Phase
R3

R1

a6

 
Figure 39: A two-phase strategy that the SRM uses for providing allocations. In the first phase, 
the SRM allocates resources to applications that share resources across information spaces. Using 
these allocations as constraints, in the second phase the SRM allocates QoS levels and associated 
resources to applications within each information space. 
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• Pluggable algorithms – To create the enhanced SRM, we reused the core code from 
the simulator that invokes the QoS allocation algorithms in the experiments described 
in Section 5. This results in a pluggable architecture for the new SRM. New 
algorithm implementations can be plugged into the SRM without changing the code 
that passes the arguments and invokes the algorithms, enabling the SRM to be 
extended as new algorithms are developed. 

• Thread-safety – We wrap the SRM QoS allocation algorithm invocation in a mutex 
operation so it is thread safe even if the SRM receives messages initiating QoS 
allocation requests while it is still processing the previous allocation request. 

• Synchronize distributed QMS components – One of the challenges facing the layered 
QMS architecture is ensuring that the elements of QMS are operating under the 
guidance of a consistent policy. To help achieve this, we added a start-time to all of 
the control messages11 going to or from the SRM. Instead of acting immediately upon 
a control message (a situation that could lead to race conditions), each QMS 
component will wait to act upon a control message until the start time. Combining 
this with synchronized clocks using NTP12 and the handling of intermittent 
communications described next, this design increases the likelihood that SRMs and 
LRMs will be acting upon consistent policy. 

• Handle communication disruptions – Since the intermittent communications in 
tactical environments or other network problems can result in disconnections in the 
network, varying link-capacities, or link losses, we cannot guarantee messages from 
an SRM component will reach its recipients (LRMs, QoS internals display, etc.) 
reliably or within a specific time. Therefore, we designed and implemented the new 
SRM prototype to gracefully handle control messages not reaching their destinations 
and ensure consistent policy enforcement and view of context (i.e., inputs to the 
SRMs) throughout a set of information spaces. To ensure this, we designed and 
implemented the SRM to do the following: 

 
a. Provide each message with a message identity number (msgID), and time-to-live 

parameter – To ensure that an LRM or SRM doesn’t process a message that was 
delayed during transmission or delivered out of order, we provide each control 
message sent or received by the SRM with a message ID and a time-to-live 
parameter. If an LRM or SRM receives a message whose msgID is older than the 
msgID of the message that it is currently handling, the message is disregarded. 
Likewise, if the time-to-live parameter on the message has expired, the message is 
disregarded. 

b. Periodically send allocations and QoS policy messages – Since the control 
message now include an expiration time (the time-to-live parameter), valid 

                                                           
11 Control messages carry control information such as QoS policies or resource allocations. Contrast these with the data messages 

that carry MIOs and payload (in an information space context). 
12 NTP is a Network Time Protocol used to synchronize distributed clocks (http://www.ntp.org/, 

http://en.wikipedia.org/wiki/Network_Time_Protocol). 

http://www.ntp.org
http://en.wikipedia.org/wiki/Network_Time_Protocol
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control messages (such as the current QoS policy), need to be periodically 
retransmitted. The SRM includes a configurable timer that tells it how frequently 
to send the control messages. At every timeout period for this timer, the SRM 
sends the allocation and QoS policy messages. The start-time, time-to-live, and 
retransmission times need to be chosen to be consistent with one another, so that 
the start-time provides enough time for every connected LRM to receive a new 
QoS policy before any LRMs act upon the policy, so that the current (or new) 
policy is received before the old one expires, and so that any LRM that does not 
receive a new policy is treated as disconnected and stops acting upon an old 
policy (i.e., its policy expires). 

c. Hold the last message – The SRM (and LRM, although we have not yet 
implemented this) holds the last control message it received and processes a new 
message only if its contents are different from the last one. This eliminates the 
overhead of processing control messages that are periodically resent (as opposed 
to new control messages) and reduces the chance of thrashing in the system. Each 
valid control message, duplicate or not, will reset the time-to-live clock. 

 
The SRM is designed to be run in a distributed manner. The three inter-information space 

algorithms that we describe in Section 4.5.1 as first phase choices (including the one that we 
prototyped in the SRM, Dynamic Approximation) are deterministic. Therefore, the SRM for 
each information space can run both the first and second phases of the two-phase algorithm in 
parallel. Given the same inputs, the SRM for each information space will reach the same result 
from the first phase, and use it as input to the second phase. 

For the SRM demonstrated and delivered to AFRL on November 15, 2007, we implemented 
the following combinations of first- and second-phase algorithms:  

 
• Dynamic Approximation + Greedy Approximation  
• Dynamic Approximation + Optimizing Brute Force  

6.2 SRM Interfaces 

This section describes the data structures and interfaces for the enhanced SRM. 
The following structure provides metadata for control messages sent to QMS components, 

such as messages from the Mission Manager to the SRM or messages from the SRM to LRMs: 
 

module qms { 
  struct MsgMetaData { 
   //! ID for each msg to differentiate it from previous msgs 
   long msgID; 
   //! Time at which the msg was generated 
   double generationTime;   
   //! how long the msg can live with respect to its generation 
time 
   double TTL;   
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   //! Time at which we want the QMS component to start 
executing 
   double startTime;  
  }; 
 }; 

 
The metadata structure includes the information needed to synchronize control messages and 

handle disruptions in communications, as described above, including a message ID, the time the 
message was generated, the time-to-live for the message, and the time at which the recipient 
should act on the message.  

The following structure identifies the algorithms that the SRM should use for its first and 
second phases: 

 
struct Algorithms  
  { 
    //! first phase algorithm 
    string firstPass; 
    //! second phase algorithm 
    string secondPass; 
  }; 

 
The following structure and sequence allows a set of applications to be described for the SRM. 

This only describes the applications. It does not include enough information to allocate QoS 
levels or resources.  

 
struct ApplicationStr 
  { 
    //! name of the application - app-1, app-2 
    string appName; 
    //! type of application - TACP, UAV. 
    string appType; 
    //! Information space in which this application is 
operating 
    string coi; 
    //! role that this application is playing - may vary 
depending upon the appType 
    string role; 
  }; 
typedef sequence<ApplicationStr> ApplicationStrSeq; 

 
The following interfaces are used to invoke, initialize, and configure the SRM. Invoking the 

SRM initiates a QoS allocation. Initialization is a special case of the configuration process in 
which an SRM is started up with an initial set of applications comprising some number of 
applications for each information space. The configure interfaces enable choosing the algorithms 
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that the SRM will run, adding new applications in bulk, removing applications, or changing the 
role of existing applications. The following paragraphs describe these interfaces. 

Invoke the SRM to initiate resource allocations. The following interface initiates QoS and 
resource allocations by invoking the functions for the first-phase and the second-phase 
algorithms. 

 
oneway void invoke(in MsgMetaData header); 
 
Initialize the SRM with a set of applications. The following interface sends an application set 

as an initial state to the SRM.  
 
oneway void initialize(in MsgMetaData header, in 
ApplicationStrSeq apps); 
 
Bulk addition of applications. The following interface enables a set of applications to be added 

in one command (useful for experimenting with the SRM at scale). 
 
oneway void addApps (in MsgMetaData header, in 
ApplicationStrSeq apps); 
 
Change the role of an existing application. The following interface enables the role of an 

application (“appName”) to be changed to a new role (“newRole”). 
 
oneway void changeRole(in MsgMetaData header, in string 
appName, in string newRole); 
 
Remove an application. The following interface enables the application whose name is 

“appName” to be removed. As a consequence, the SRM is no longer responsible for providing 
allocations for the specified application. 

 
oneway void removeApp(in MsgMetaData header, in string 
appName); 
 
Choose first and second phase algorithms. The following interface enables selection of the 

algorithms that the SRM will run for the first and second phases.  
 
oneway void chooseAlgorithms(in Algorithms alg); 

6.3 Prototype Mission Manager 

For the enhanced SRM prototype, we updated the prototype Mission Manager software to serve 
as a driver for operating the enhanced SRM. The prototype Mission Manager provides a 
graphical user interface and sends commands to the SRM using the interfaces described above. 
As shown in Figure 40, it supports initializing the SRM, adding new applications, removing 
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existing applications, changing the role of an application, choosing the algorithms that the SRM 
runs, and invoking the SRM. 

6.4 Prototype Support Software for the Enhanced SRM 

The SRM prototype needs configuration information about the number of information spaces, 
applications, their QoS levels, utilities, and resource usage. Ultimately, some of these will be 
provided by runtime calculation and monitoring, configuration files or scripts, or third party 
capabilities. In the current prototype, we provide the configuration and input information that the 
SRM needs through a combination of constructor settings, command line arguments, 
configuration files, and support software. This section describes each of these, including the 
following: 
 

• Configuration and initial setup 

Initializes SRM

Changes the role
of an application

Removes an application

Adds new applications

Chooses first and
second phase algorithm

Invokes SRM

 
 
Figure 40: The version 2 Mission Manager prototype, used for exercising the SRM 
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• Resource Mapper 
• Internals’ Display 

6.4.1 Configuration and Initial Setup 

The current SRM prototype has the set of information spaces (i.e., the COIs), the set of resources 
each uses, and the set of resources that they share specified in the SRM constructor function. 
Ultimately, this information should be provided by an information space administration tool, 
resource discovery service, or configuration file.  

6.4.2 Resource Mapper 

The resource mapper is a component envisioned to determine the resources used by applications 
in particular roles and at particular QoS levels at runtime. In the current prototype software we 
provide a version of the ResourceMapper interface useful for demonstrating the SRM 
functionality. This version, called RandomResourceMapper maps an application’s resource 
usage in a particular QoS level and role to a random selection of resources from the resources 
available. It is invoked in the SRM constructor. The RandomResourceMapper takes as input a set 
of “Typename, Filename” pairs, which identify configuration files for each type of application. 
Each application type configuration file provides information about the applications in each COI, 
their QoS levels, utilities, and resource usage. Figure 41 shows an example application type 
configuration file. 

ISR-High   0.8   3   0.05 0.20 0.20
ISR-Med    0.6   3   0.10 0.15 0.01
ISR-Low    0.2   3   0.10 0.10 0.01

Starve     0.0   0

TT-High    0.6   3   0.70 0.20 0.17
TT-Med     0.5   3   0.10 0.50 0.12
TT-Low     0.3   3   0.30 0.40 0.15

QoS-level Utility

Num. of resources
used by each application

Amount of each of 
the three resources

 

Figure 41: The configuration file read by the Resource Mapper. 
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6.4.3 Internals’ Display 

The Internals’ Display is a graphical user display that shows information about the operation of 
the SRM algorithms. This display depicts the number of applications in different information 
spaces, the resources shared by the applications across the information spaces, the runtime of 
algorithms in different information spaces, the allocation produced by the SRM, and (when 
possible) the optimality of the resulting allocation. 

This display has the following six panels as illustrated in Figure 42: 
 

A. A progress bar that reflects the progress of the SRM’s execution. In the current 
prototype, the progress bar moves at the completion of each stage of the SRM 
execution. 

B. The total number of applications in all the information spaces and the number of 
applications in each individual information space. 

C. The execution time of the first- and second-phase algorithms. 
D. The number of resources shared across the information spaces and the number of 

applications sharing those resources. It also displays the total number of resources 
available and the total number of applications. 

E. A comparison of the sum of the utilities of the allocations provided for both 
information spaces with the utility of the optimal allocation. The optimal utility is 
computed by running the Optimizing Brute Force algorithm on the combination of 
both information spaces. This panel reports “scenario too big”, if the search space is 
too large (greater than 328 possible allocations). 

F. A representation of the solution returned by the SRM. The first two rows display the 
aggregate allocation (across both information spaces) compared to the optimal 
allocation (if available). The second two rows display the allocations for each 
information space. The first three columns of each allocation show the number of 
applications that received the “High-QoS”, “Medium-QoS”, and “Low-QoS” choice 
appropriate for their role (these QoS levels come from the configuration file in 
Figure 41). The next column (“NRA”) indicates the number of applications that 
received a “Non-Role Appropriate” allocation, i.e., the application received an 
allocation of resources but not associated with any of the QoS levels requested for 
the application’s role. The last column represents the number of applications that got 
starved, i.e., they received no allocation. 
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Panel B

Panel C

Panel D

Panel E

Panel F

Panel A

 
Figure 42: The Internals’ display for the SRM. 
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7 Demonstrations 

We conducted several demonstrations of our software prototypes throughout the DynRIIC 
project. In this section, we describe three of the demonstrations in more detail. 

7.1 Demonstration of QMS Version 1 (TIM at AFRL, October 2, 2006) 

In this section, we describe a demonstration we conducted of a simulated time sensitive targeting 
(TST) operation, how QMS provides its QoS management, and a comparison of performance of 
the system with and without QMS active. We conducted this demonstration at a technical 
interchange meeting (TIM) at AFRL on October 2, 2006. 

7.1.1 The Time Sensitive Targeting Demonstration Scenario 

The TST demonstration scenario consists of two communities of interest, ISR COI, an 
institutional COI, and TST COI, an expedient COI. The information space for the ISR COI uses 
the JBI RI for application data. The information space for the TST COI uses OCI’s DDS 
implementation for its application data. Both information spaces use the CORBA Notification 
Service for control traffic. 

There are three simulated UAVs and three simulated C2 processes. The simulated UAVs are 
information publishers, sending imagery information. The simulated C2 processes are 
information subscribers, each receiving and displaying imagery from one of the simulated 
UAVs. Each UAV-C2 receiver client pair can operate in one of three roles: 

 
• Surveillance (ISR) where the UAVs simulate performing routine surveillance of an 

area of interest. The QoS requirements are that the imagery should be at sufficient 
rate that there are no gaps in coverage and that it should be at least of sufficient 
resolution to detect whether there is a potential target that merits a closer look. This 
role is the least important relative to the other roles. 

• Target tracking (TT) where the UAVs have been instructed to take a closer look at 
(i.e., track) a potential target. This is a role in which a commander has decided that 
there is a potential threat or target in surveillance imagery, and the item of interest 
should be carefully observed. The imagery should be high resolution and at a 
sufficient rate to track a moving object. This role is the most important of the three 
roles. 

• Battle damage assessment (BDA) where an action has taken place, such as 
engagement of a target, and a UAV has been directed to collect imagery for assessing 
the effectiveness of the action, such as the extent of damage. The imagery should be 
high resolution and a large size to facilitate off-line analysis, but does not have to be 
at a high rate. This role is more important than routine surveillance, but not as 
important as target tracking. 
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As illustrated in Figure 43, the demonstration scenario consists of the following sequence of 
events: 

 
1. Participants in ISR_COI are gathering and analyzing intelligence imagery (ISR 

role). A commander at the C2 detects suspicious insurgent activity in an area of 
interest (AOI).  

2. The mission manager creates a new TST_COI to act on the suspected insurgent 
activity. We simulate the creation of a new information space, which results in 
dynamic deployment of two new SRMs – one for TST_COI and one for the 
resources shared between TST_COI and the existing ISR_COI.  

3. The mission manager requests a UAV from ISR_COI to relocate to TST_COI and 
tasks it to perform surveillance in the AOI. Based on the imagery, he reassigns the 
UAV to track a target and engage it (TT role). This results in resource reallocations 
and QoS adaptations in both information spaces. 

4. On completion of the engagement, the mission manager requests another UAV from 
ISR_COI to move to TST_COI and collect battle damage imagery (BDA role). This 
results in another reconfiguration by the QMS. 

5. On completion of both tasks, the two UAVs in TST_COI are tasked to move to the 
ISR role, with another resulting reconfiguration by the QMS. 

6. As the final step in the demonstration, the QMS system is turned off to show the 
performance of the demonstration components and COIs when behavior is 
unconstrained. 

 
 

ISR_COI starts with 3 simulated UAV 
assets and 3 simulated C2 receiver 
assets, performing the ISR roles

Identification of threat causes 
(simulated) creation of TST_COI 

Two ISR asset pairs (simulated UAV 
and C2 receiver) move from ISR_COI 
to TST_COI to track target and 
perform BDA

Assets in TST_COI resume 
performing ISR

ISR Mission

IMS

ISR_COI

TST_COI

JTF for TST Mission

IMS

ISR Mission

ISR_COI

IMS

TST_COI

JTF for 
TST Mission

IMS

ISR Mission

ISR_COI

IMS

TST_COI

JTF for 
TST Mission

TST_COI

JTF for 
TST Mission

IMS

 
 

Figure 43: The TST demonstration scenario 
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7.1.2 Execution of the Demonstration 

A detailed description of the demonstration and instructions for running it are included in [1]. 
The Mission Manager user interface, illustrated in Figure 44 and described in Section 3.4.1, was 
used during the demonstration to move assets (and their client software) between COIs, to 
change the role of participants, to turn QMS on and off, and other demonstration driving 
operations. 

The QoS internals display, illustrated in Figure 45 and described in Section 3.4.2, showed the 
internal behavior of the system. It displayed the COI to which each asset belonged, the IMS or 
pub/sub middleware servicing each COI, the role of the asset, its priority, the amount of 
resources allocated and used by the participant, the QoS policy, and the actual delivered QoS. 

The changes in roles and delivered QoS were visible to demonstration observers by observing 
an application-specific display of the imagery being published and consumed by the 
demonstration participants. A sample of the imagery displays is illustrated in Figure 46. The 
color of the border around each display indicated the role of the producer and consumer of the 
imagery (blue for the surveillance role, green for target tracking, and yellow for battle damage 

 
Figure 44: The Mission Manager used to control the steps in the demonstration. 
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indication). While some of the QoS adjustments (e.g., compression) might not have been 
noticeable to the naked eye, others (e.g., rate change, scaling, and cropping) were readily 
apparent from the display. 

Figure 47 shows the performance of one of the demonstration participants, UAV_Sensor_1, a 
client publishing imagery. The client starts off in the ISR role in the ISR_COI, which uses the 

 
Figure 45: The display of the QoS policies and QoS-related behavior of demonstration 
participants. 

 
Figure 46: The display of imagery data upon delivery by the demonstration system. The colored 
borders indicate roles of the publisher and subscriber. The differences in imagery quality, size, 
and rate were as a result of QoS management. 
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AFRL JBI RI 1.2.6. The QMS system divides bandwidth and CPU among all of the clients based 
on the importance of their role in the mission, and shapes the clients' information production and 
processing to meet its mission requirements within the allocations. In this case, the 
UAV_Sensor_1 client is the same priority as other surveillance clients and receives enough 
bandwidth and CPU to deliver imagery at medium resolution and at a rate to get sufficient 
coverage. This results in the QMS system shaping the information by compressing the imagery 
and controlling the rate. It also sets the proper parameters on the underlying platforms so they 
can properly prioritize the traffic. In this case, the AFRL RI does not have differentiated service, 
so there is some introduced latency and jitter, but no data loss and controlled resource usage. 

The first red line indicates moving UAV_Sensor_1 to the TST_COI and setting its role to 
target tracking. The target tracking role has a higher priority than the other roles, and the 
TST_COI has a higher priority than the ISR_COI. This causes this client to have a relatively     
higher priority than before and a need for higher QoS to transmit a higher rate of imagery. The 
QMS system allocates more bandwidth and uses it to send imagery at a higher rate, 2-3 times 

Change to a 
critical role 
and move to 
a critical COI 
(using DDS)

QMS is turned 
off 

Bandwidth 

CPU 

Latency 

Send vs. 
receive rate

IOs sent

IOs received

Back to a 
non-
critical 
role in the 
same COI

Client is in a non-
critical role in a 
non-critical COI 
(using JBI)

 
Figure 47: Performance of UAV1 in the demonstration. 
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higher than before. The TST COI uses the OpenDDS, which provides differentiated service and 
responds to the QMS control to maintain no data loss and low latency. 

The second red line indicates changing the role of UAV_Sensor_1 back to ISR. The client is 
back to a non-critical, ordinary priority, and its need for high rate imagery is reduced. The CPU 
usage and send rate decline. 

The third red line indicates that we turned off the QMS system to show how the 
unconstrained, uncontrolled system would operate. All the clients are sending unconstrained, 
regardless of their relative priorities and their mission needs, and competing for the available 
bandwidth and CPU. While the UAV_Sensor_1 client is getting more bandwidth and CPU by 
chance, its use is unconstrained and jittery. It and other clients are not getting a reliable amount 
of resources, and 2/3 to 3/4 of the IOs being sent are lost and those that are getting through are 
experiencing significant and unpredictable delay. 

7.1.3 Performance of the Demonstration Software 

This section shows more details about the relative performance of the participants in the 
demonstration. The results described in this section were gathered by running the demonstration 
twice, once with QMS active and once with QMS inactive, and collecting metrics on latency, 
data loss, and resource usage. We ran the demonstration on three 2.4 GHz Intel Pentium laptops 
with 512 KBRAM connected by a 100Mbps Ethernet switch. One of the machines hosted all 
three simulated UAVs on RedHat Linux 9.0. A second machine hosted all three simulated 
receivers and OpenDDS on RedHat Linux 9.0. The third machine hosted the JBI RI IMS on 
Fedora Core Release 3. We synchronized the clocks on all three machines using NTP. Data 
flowed from the simulated UAVs to the IMSs and then to the simulated receivers. 

Figure 48 shows the end-to-end latencies for information delivery with and without QMS 
active. With QMS active, the end-to-end latency of imagery delivery is nearly zero with very low 
variance for all the simulated UAVs: UAV0 performing ISR, UAV1 performing TT, and UAV2 
performing BDA. In contrast, without QMS, the AFRL RI being used for information from 

 
Figure 48: Latency of information delivery in the demonstration with and without QMS active. 
Without QMS, there is high variance and significant introduced latency, whereas with QMS the 
imagery is delivered with near zero delay. 
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UAV0 introduces uncontrolled delay, with information objects being delayed by as many as 15 
seconds. DDS, being used in the TST_COI for UAV1 and UAV2, performs better with a worse 
case delay of less than 2 seconds, but still with significantly more jitter. 

DDS avoids introducing as much delay into the information delivery by dropping information. 
As Figure 49(a) illustrates for UAV1 performing the TT role, DDS is simply not able to keep up 
with the information rates that the information sources can provide, even at a modest five images 
per second. Without QMS management, the data loss is uncontrolled and highly variable. Figure 
49(b) shows that QMS recognizes the DDS as a bottleneck and manages it by throttling the send 
rate back (and using it for the most important imagery), resulting in controlled, predictable 
behavior. 

Figure 50 and Figure 51 show how well QMS controls resource access and usage, and how 
QMS allocates resources to clients based on their role in the mission. Figure 50 shows network 
usage on the link from the IMS and dissemination service to the receivers. Network usage varies 
widely for all the simulated UAVs with QMS disabled, regardless of the importance of their 

 
Figure 49: (a) Without QMS, UAV1 performing target tracking and using DDS experiences high 
variance and information loss. (b) With QMS, the sending of TT imagery tracks the receipt very 
well, with predictable information delivery. 

 
Figure 50: Without QMS, network usage is best effort, resulting in bursty, unpredictable network 
usage. With QMS, UAV1 performing TT is allocated the most, UAV2 performing BDA next, and 
UAV0 performing ISR next. The behavior of each is managed to effectively use the allocated 
bandwidth according to the role, resulting in predictable, effective bandwidth usage. 
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roles. The worst case network usage can reach over 40 Mbps for the information streams in the 
TST_COI but, as described above, the RI and DDS are unable to sustain the data rates needed for 
that network usage, resulting in bursty behavior, uncontrolled loss, and unpredictable resource 
usage. In contrast, with QMS enabled, more network bandwidth is allocated to the TT role 
(UAV1) than to the BDA role (UAV2), which in turn gets more than the ISR role (UAV0); and 
usage of the bandwidth is controlled to ensure predictable, sufficient QoS. 

Figure 51 shows similar results for CPU usage at the simulated C2 node hosting the simulated 
receivers. In this case, while the CPU is part of the overall end-to-end QoS management 
capability being provided by QMS, it is not the bottleneck being managed (the IMS and 
dissemination service are the main bottlenecks). Even so, Figure 51 illustrates that uncontrolled 
usage can be bursty, approaching significant fractions of the available resources in the worst 
case, and does not distinguish between the roles. In contrast, using vanilla Linux priorities, active 
QMS management reduces the jitter, increases the predictability, and ensures that available CPU 
is used in accordance with the mission priorities. 

7.2 2007 PI Meeting Demonstration (OIM PI Meeting, Washington, DC, 
April 24, 2007) 

We conducted a demonstration of our prototype software at the Operational Information 
Management Principal Investigators meeting held in Washington, DC, April 24-25, 2007. The 
demonstration was similar to the previous one, but showcased the allocation of QoS levels using 
multiple resources, using the approximation algorithm described in Section 4.3.  

Figure 52 illustrates the basic operation of the demonstration. It started with two information 
spaces. The first information space had two publisher clients and one subscriber client and the 
second information space had one publisher client and one subscriber client. The publisher 
clients simulate UAV image sensors and the subscriber clients simulate command and control 
(C2) centers.  

The demonstration showcased the allocation of QoS levels and their resources among the 
control points in each information space. It then migrated one of the publishing clients from the 
first to the second information space and illustrated the QMS system reallocating the QoS levels 

 
Figure 51: QMS provides less bursty, more effective use of CPU resources based on the roles. 
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and resources dynamically. The demonstration showed the QMS reallocating QoS levels as roles 
of the clients change (from ISR to TT and from ISR to BDA). Finally, the demonstration 
illustrated the relative benefit of QMS, by turning off the QMS system and showing the 
relatively lower quality and less predictable behavior of the system, in the form of increased jitter 
and uncontrolled information loss. 

We conducted the demonstration on four laptops, with the software distributed as illustrated in 
Figure 53. This display, which was available throughout the demonstration, also shows the 
topology of the demonstration from the SRM point of view. It shows the QoS levels allocated to 
each control point (CP-A, CP-B, and CP-C) and the resource allocation to which each allocated 
QoS level corresponded. 

As in the previous demonstration, the simulated operational behavior was readily available to 
observers through a simulated C2 display, illustrated in Figure 54. This display showed the 
following: 

 
• Imagery for each subscriber client 
• The client publishing the imagery (i.e., UAV1, UAV2, or UAV3) 
• The role of the publishing client, presented as both a colored boundary for the image 

and by name 
• The rate that imagery is being sent (i.e., published) 
• The rate that imagery is being received by the subscriber 
• The latency for the imagery 

 
Observers could see changes in the allocated QoS levels by observing changes in the rate, size, 

and resolution of the imagery, as well as the display of the QoS level in Figure 53. 
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Figure 52: Basic operation of the OIM PI meeting demonstration 
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The demonstration also included a display that showed the internal behavior of the 
demonstration software from different points of view, each on a different tab, including the 
following:  
 

 
 
 
 
 
 

 
Figure 53: The SRM display showing the topology of the demonstration  

 
Figure 54: The C2 consumer client displays showing received imagery 
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• The resource view showing each resource and how much of the resource is being 

used by each control point, illustrated in Figure 55. 

 
 
 
 
 
 
 
 
 
 

 
Figure 55: The resource view showing each resource and how it is allocated. 
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• The asset view showing the resource allocations for each control point, illustrated in 

Figure 56. 

 
 
 
 
 
 
 
 
 
 

 
Figure 56: The asset view showing each control point and the resources allocated to it. 
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• The network layout view showing the topology and data flow of the demonstration, 

illustrated in Figure 57. 

 
Figure 57: The network layout view showing the demonstration topology and data flow. 
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• The control point view showing which processes in the demonstration made up each 

control point, i.e., related elements that are treated as a single unit by the QoS 
manager, illustrated in Figure 58.  

7.3 Final Demonstration (Final TIM at AFRL, November 15, 2007) 

At our final technical interchange meeting at AFRL on November 15, 2007, we conducted a 
demonstration of the multi-QoS, multi-resource enhanced SRM prototype described in Section 6. 
In contrast to the previous demonstrations, described in Sections 7.1 and 0, which concentrated 
on demonstrating QoS management in an operationally relevant context, this demonstration 

 
Figure 58: The control point view that shows the related elements in the demonstration that 
make up each control point. 
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concentrated on showcasing the SRM running the new QoS management algorithms, including 
its ability to allocate QoS levels for multiple information spaces with large numbers of 
applications. To do this, we needed to simulate many more applications than was possible in the 
previous demonstrations, which ran simulated clients with real IMSs and resources on a few 
laptops. This demonstration used configuration files, user-specified input, and a scenario 
generator to provide input for the SRM that simulated large numbers of applications, QoS levels, 
utility measures, and resource usage. 

The demonstration, described in more detail in [2], showcased the extensibility and usability 
of the SRM, including the following: 
 

1. Configurability of the SRM with various allocation algorithms: We provided the 
option of configuring the SRM with either an Optimizing Brute Force or Greedy 
Approximation second phase.  

2. Scalability to handle a large number of applications:  The demonstration illustrated 
that the SRM using the approximation first- and second-phase can provide 
allocations to a large number of applications and how the runtime is affected by the 
number of applications. 

3. Support for dynamic information spaces: The demonstration illustrated that the 
SRM can allocate QoS levels in a dynamic information space environment where 
any of the following can change: the number of applications, the roles of 
applications, the number of resources shared across the information spaces, and the 
applications sharing resources across information spaces.  

7.3.1 The Demonstration Context 

The demonstration included two information spaces and a fixed number of 225 available 
resources. Each information space had access to 150 of the available resources, with 75 of the 
available resources available to be used by applications in either information space, as illustrated 
in Figure 59. We used a single instance of the SRM software to simulate the two SRMs normally 
used by two information spaces. Our single SRM ran the first phase algorithm, followed by the 
second phases for each information space sequentially, followed by the centralized Optimizing 
Brute Force algorithm (if the scenario was small enough) to get the optimal solution for 
comparison. The centralized Optimizing Brute Force algorithm would only be run if the number 
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Figure 59: The final demonstration utilized 225 available resources, 75 of which were shared 
between the two information spaces. 
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of possible allocations (leaf nodes in the search tree) was less than or equal to 350, or 7.18E23, 
states based on our experimental runtime measures for the Optimizing Brute Force algorithm 
described in Section 5.3.1 and illustrated in Figure 18. 

The number of applications running in each information space was entered at runtime using 
the Mission Manager interface shown in Figure 60. The QoS levels, utilities, and resource usage 
were provided in a configuration file, as illustrated in Figure 61. The exact resources that were 
used by each application and QoS level was mapped randomly by an instance of the Resource 
Mapper, described in Section 6.4.2, which did resource mapping randomly from among the 
available resources.  

Because the number of available resources was fixed, the contention for resources increased as 
we increased the number of applications during execution of the demonstration. The likelihood 
of resources being shared between the information spaces also increased, as did the number of 
applications sharing resources between the information spaces.  

The two information spaces simulated in the demonstration were labeled COI-E and COI-TC. 
Each application could have two roles, ISR or TT. As illustrated in Figure 61, the configuration 

Initializes SRM

Changes the role
of an application

Removes an application

Adds new applications

Chooses first and
second phase algorithm

Invokes SRM

 
Figure 60: The Mission Manager interface used to drive the final demonstration. 
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file used in the demonstration specified seven QoS levels: three for the ISR role, three for the TT 
role, and a starvation level. As illustrated in Figure 62, although any of the QoS levels could be 
chosen by the SRM, only three of them were appropriate for any application at a given time: the 
three pertaining to its role. To simulate this, the utility of each role-appropriate QoS level was 
multiplied by 1000 by the simulation software. This meant that the SRM calculated much greater 
utility for choosing a role appropriate QoS level, very small utility for choosing a non-role 
appropriate QoS level, and no utility for choosing starvation. For example, if an application is in 
the ISR role, the ISR utility values in the file were multiplied by 1000, making them 3 orders of 
magnitude higher value than the TT QoS levels.  

7.3.2 Execution of the Demonstration 

We conducted the demonstration to show the SRM allocating QoS levels and resources as the 
number of applications varied, the roles of the applications varied, and the algorithms used by 
the SRM varied. 

We started the demonstration by using the Mission Manager to initialize the SRM. This 
created the two simulated information spaces, COI-E and COI-TC, and placed two applications 
into each information space in predefined roles, specified by command line arguments to the 

ISR-High   0.8   3   0.05 0.20 0.20
ISR-Med    0.6   3   0.10 0.15 0.01
ISR-Low    0.2   3   0.10 0.10 0.01

Starve     0.0   0

TT-High    0.6   3   0.70 0.20 0.17
TT-Med     0.5   3   0.10 0.50 0.12
TT-Low     0.3   3   0.30 0.40 0.15

QoS-level Utility

Num. of resources
used by each application

Amount of each of 
the three resources

 
 

Figure 61: Example configuration file used in the final demonstration. 

ISR-H ISR-M ISR-LTT-LTT-H TT-M Starve

TT

ISR

Role Appropriate Non Role Appropriate :NRA

Role AppropriateNon Role Appropriate :NRA

QoS-range

ISR-H ISR-M ISR-LTT-LTT-H TT-M Starve

TT

ISR

Role Appropriate Non Role Appropriate :NRA

Role AppropriateNon Role Appropriate :NRA

QoS-range

 
 
Figure 62: Three of the QoS levels were considered appropriate for a given role. 
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Mission Manager. Once the SRM was initialized with this start-up configuration, we took the 
following steps: 

 
1. Dynamically Configure SRM with a Pluggable QoS-Management Algorithm: Using 

the Mission Manager interface we selected one of the second-phase algorithms. We 
were careful to select the Greedy Approximation algorithm when the number of 
applications in the information spaces got larger than a few tens of applications, 
because of the worst case execution time of the Optimizing Brute Force algorithm. 

2. Execution of the SRM: We added applications, invoking the SRM afterward to show 
the QoS allocations, with the results displayed as illustrated in Figure 63. We started 
by adding a few (ten to twenty) applications to each of the information spaces and 
invoked the SRM. The results display showed the speed of execution of each phase 
and the resulting QoS allocation, i.e., how many applications got their highest QoS 
level, their next highest, their lowest, a non-role appropriate QoS level, or the 

 
Figure 63: The display of the results of invoking the SRM during the final demonstration 
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starvation level (representing no allocation). At these small numbers, the results 
display also showed the optimal allocation (produced by running the centralized 
Optimizing Brute Force as a comparison). 

3. Scalability of the SRM: We then added more applications incrementally to each 
information space, first 50-70, then hundreds, then a thousand or so, invoking the 
SRM after each addition to show the speed of the execution and the resulting 
allocation. As the number of applications rose, the execution time of the first phase 
began to dominate because the number of applications sharing resources between 
the information spaces became larger than the number of applications in either 
information space. Likewise, the resulting allocations had larger numbers of 
applications in the starved or non-role appropriate allocation categories. Both of 
these phenomena are because the number of available resources was fixed and as the 
number of applications increased, contention for this fixed pool of resources 
increased. 

4. Dynamic Environment:  We performed the following to show the dynamic nature of 
the SRM: 
a. We removed applications from each of the information spaces. 
b. We changed the role of some of the applications. 

 
At each step, we showed the resource allocations for each COI, the time it took to run each of 

the first and second-phase algorithms, the number of resources that were shared across the 
information spaces, the number of applications that were shared across the information spaces, 
and the number of applications that got each possible QoS allocation. We also spent time during 
the demonstration allowing the observers to suggest configurations and inputs to try out. 
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8 Conclusions and Future Work Recommendations 

The DynRIIC project has made advancements in the following two key areas for dynamic QoS 
management for publish-subscribe information spaces: architecture and algorithms. 

We have defined an architecture for a multi-layered QoS management system, and produced a 
design and prototype of the architecture. The QMS architecture, design, and prototype extend the 
concept of information spaces to make them suitable for the real-time information delivery 
needed by tactical, asymmetric warfighting missions. The current QMS design fits well within 
the information space concept, providing a manager that works in conjunction with existing 
managers, such as IMSs, security and mission managers. The multi-layered architecture fits the 
hierarchical structure of military missions, while retaining the flexibility for distributed, 
cooperating missions.  

We have also advanced the state of the art in multi-resource QoS allocation algorithms by 
defining, evaluating, and prototyping a set of algorithms that allocate QoS levels and resources 
across large numbers of applications and control points within information spaces, and for 
applications that share resources across information spaces. The Optimizing Brute Force 
algorithm provides optimal allocations in reasonable execution time for modest numbers of 
applications. The Greedy Approximation algorithm provides approximate solutions, but scales 
well, with demonstrated fast execution times to hundreds or thousands of applications. Greedy 
Approximation has the fastest runtime, but less optimal solutions, in highly contentious scenarios 
(defined by the number of feasible allocations). Conversely, it produces more optimal solutions, 
but takes more time to do so, when contention is low (i.e., there are many feasible solutions). 

Our multi-phase approach to inter-information space QoS allocations scales well when the 
number of applications are spread relatively uniformly over the information spaces and when 
only a reasonably small number of the applications share resources across the information 
spaces. When the majority of applications share resources across information spaces or the 
applications are not uniformly spread, then the execution of the first phase or the second phase, 
respectively, dominate the execution time and approach the execution time of a centralized 
algorithm. 

The architecture and algorithm results that we have produced in DynRIIC help advance the 
AFRL OIM goals of tactical information dominance (TID), as illustrated in Figure 64. Future 
work building upon these foundations will help further move toward the TID vision. Some of the 
areas that need future investigation follow: 

QoS Policy Definition and Development. There are still important areas of research to 
investigate languages for QoS policy, aggregate policies for starvation and fairness, other 
methods for creating policies such as negotiation or commerce-based, richer QoS policy 
specifications for a larger class of systems and scenarios, and capturing mission-level policy and 
refining it to actionable, enforceable policies. 

Cooperating, peer-to-peer QoS managers. Our multi-layered approach maps well to the 
hierarchical military structure. In the tactical environment, there are more peer-to-peer 
interactions. It is an important area of research to combine our approach with technologies for 
MANETs and ad hoc, peer-to-peer environments. 

Synchronizing Information Spaces. Dissemination and enforcement of QoS policies must be 
carefully synchronized. The QoS policies must be received and acted upon by all the relevant 
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local enforcement points. Otherwise, the system could be running in an unstable state in which 
some participants are operating on current policies and others on previous ones. It is also 
important that applications do not start using resources before they are relinquished by other 
applications, otherwise an overload situation could occur. We have defined and prototyped some 
concepts contributing to this synchronization, but there is room for further research. 

Acquiring Inputs to the QoS Allocation Algorithms. Our QMS algorithms require knowing the 
amount of available resources; a set of discrete QoS levels; the number, types, and amount of 
resources used by a given QoS level for an application; and the utility associated with an 
application and QoS level. Having good sources for the availability of resources and accurate 
estimates of resource use for a given application and QoS level is non-trivial. This information is 
essential for the QMS algorithms to allocate QoS levels and resources accurately. We need to 
provide or use sensors, monitors, and models that provide this information, and do so in a 
coordinated manner so that the algorithms in different information spaces see the same global 
view of available and required resources. This problem becomes even more difficult when the 
information is needed in real-time (so that important applications do not get starved), or when 
information spaces operate in disconnected and tactical environments (where the 
communications to the QMS can be unreliable). 

Identifying Outliers. The QMS approximation algorithms produced some outliers (i.e., 
suboptimal solutions) for the randomly generated scenarios. Although we identified extreme 
resource contention as a cause for some of the outliers, it is still an open issue to identify the 
cause for others. 
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Figure 64: The DynRIIC project has advanced the goals of tactical information dominance and 
helped establish a foundation for further advancements toward the TID vision. 
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Predicting Optimality. Even if the source of many of the outliers could be determined, it is 
likely that not all of the outliers could be eliminated. That is, the approximation algorithm will 
perform better on some scenarios than others, in terms of producing near optimal solutions. Since 
we have a choice of QoS allocation algorithms, it is a desirable goal to find a metric, or set of 
metrics, that can be used to predict how well the approximation algorithm will perform for a 
given scenario.  
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9 Chronological Review of DynRIIC Activities 

This section presents a description of the technical progress on the DynRIIC project, presented in 
chronological order, as reported in the DynRIIC monthly reports. 

9.1 Project inception (September 22, 2005) through October 31, 2005 

We kicked off this project this month, with a kickoff meeting held at AFRL, Rome, NY, on 
October 24. The slides from this kickoff meeting have been uploaded to Jiffy. 

We began identifying example Communities of Interest (COIs) upon which to focus, began 
identifying different implementations of IMS to use for these COIs, began identifying the 
interfaces that need to be defined, and began planning the elements of the proof of concept 
demonstration for this project. 

We registered in AFRL’s CMDB and requested a copy of the AFRL RI 1.2.5 (patched) release 
and fuselet related software. As soon as we receive this software, we will begin evaluating it. 

9.2 November 2005 

During the report period, we identified a draft set of representative COIs extracted from COI 
reports we obtained from the Government and a literature search. We identified ways in which 
these COIs can interoperate (e.g., assets leaving, sharing assets, assets joining) and described 
these interoperations in concrete terms using scenarios from our previous demonstration for the 
DARPA/IXO PCES program.  

We also developed a draft list of requirements and specifications for interfaces supporting 
interoperation between COIs from a functional and QoS management point of view. 

We began developing a draft User’s Manual and Demonstration Script that documents our 
demonstration context, representative set of COIs, set of potential interoperations, interface 
specifications, and demonstration architecture and design. We plan to deliver this document to 
AFRL during the next report period.  

We received a copy of the AFRL RI 1.2.5 (patched) release, but have not yet received the 
copy of the fuselet related software that we requested. 

9.3 December 2005 

During the report period, building upon the draft requirements and representative COIs that we 
developed last report period, we developed a strawman architecture for a QoS Management 
System (QMS). The QMS will handle the QoS management aspects of COI interoperation, 
including assets entering, leaving, and being shared between COIs. Once an entering asset has 
been assigned a role in a COI (e.g., a role in a mission such as surveillance or target tracking), 
the asset negotiates a QoS contract with the QMS, including what resources it provides, what 
resources it is allocated, and the necessary QoS tradeoffs it needs to make. The QMS includes a 
layered resource manager, with a System Resource Manager (SRM) that allocates the resources 
shared within a COI or COA and provides QoS policies and Local Resource Managers (LRMs) 
for each asset that shape the asset’s behavior to effectively utilize the resources it is allocated in 
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service of its role in the mission. This architecture will be documented in our TIM presentation 
and in the next draft of the User’s Guide and Demonstration Script document. 

We delivered the first draft of the User’s Guide and Demonstration Script that documents our 
demonstration context, representative set of COIs, set of potential interoperations, interface 
specifications, and demonstration architecture and design. We began developing our presentation 
for the upcoming TIM. 

9.4 January 2006 

During the report period, we hosted a Technical Interchange Meeting (TIM) at BBN. During the 
TIM, we presented the goals of our project, our architecture for a QoS Management System 
(QMS) supporting interoperability between COIs, and our plans. We received feedback on our 
architecture to date from Mr. Dale Richards.  

After the TIM, we made progress in the following activities: 
 

• We revised our architecture based upon the feedback we received from Mr. Richards. 
• We began revising the User’s Guide and Demonstration Script, based on the work 

we’ve done since submitting the first draft and based upon feedback from Mr. 
Richards, including updating the format and updating the system requirements.  

• We began refining our demonstration scenario and identifying the constituent 
software pieces of the demonstration. 

• We began designing the software elements of the QMS. 
• We researched different IMS systems implementations – AFRL RI, Web Services, 

and DDS that we are going to support and use to test QMS. These are documented in 
the revised User’s Guide and Demonstration Script. 

• We started defining the QoS terminology such as QoS Policies and QoS Contracts 
and providing examples. 

 
In addition, we contacted Boeing, another ICED contractor. We had identified the need for an 
element playing a Mission Manager role, granting permission to join (i.e., controlling access to) 
a COI and assigning roles in a mission. There is overlap with some of the work Boeing is doing. 
We plan to continue to explore this with them. 

9.5 February 2006 

During the report period, we primarily worked on revising the software architecture, design, and 
demonstration scenario and script. This is captured in the revised version of the User’s Guide 
and Demonstration Script, which we submitted to Jiffy on February 23.  

The main changes included in this document are: 
 

• We revised our architecture to concentrate on the QoS management capabilities. 
• We updated the format and updated the system requirements.  
• We refined our demonstration scenario and identified the constituent software pieces 

of the demonstration. 
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• We defined the terminology and provided more examples. 
• We identified the IMS implementations that we plan to support and use to test QMS.  

9.6 March 2006 

Our main technical accomplishments during the report period involved refining our design and 
beginning the development of our QMS system and demonstration.  

Our refined design is documented in our slides from our TIM on March 29. Some of the 
refinements that we made are to identify specifically the structure of the membership contract 
that an asset publishes upon entry to a COI and the QoS policy structure used to disseminate 
policy between an SRM and LRMs. We also further refined the interactions in the system when 
an asset enters, leaves, when a reconfiguration occurs, and when QoS managed information 
exchange occurs. 

We also began implementing our QMS system and our demonstration for the JBI PI meeting. 
We implemented a System Resource Manager (SRM) and Local Resource Managers (LRM). We 
adapted a set of simulated ISR sensors representing UAVs to send imagery over the AFRL JBI 
Reference Implementation version 1.2.6. We integrated our SRM and LRMs to control the QoS 
of image publishing based on the role of the UAV. 

We also began developing our presentation, poster, and quad chart for the JBI PI meeting, 
scheduled for April 11-12, 2006. 

9.7 April 2006 

During the report period, we continued development of the QoS management system (QMS) for 
COIs. Some of the specific accomplishments in the QMS development are 
 

• Developed and tested the membership contracts that a platform (i.e., a data producer 
or consumer) entering a COI publishes to introduce itself to the IMS. Membership 
contracts are based on the Force Templates concept. 

• Created a prototype Mission Manager GUI to let a commander add assets to a COI, 
remove assets from a COI, move assets between COIs, assign mission roles, and QoS 
constraints to assets. 

• Developed and tested QoS policy contracts that mission and resource managers (such 
as the system resource manager, SRM) use to disseminate QoS policies. We are in the 
process of updating the Mission Manager and SRM to use these XML-based 
contracts. 

• Enabled the system to connect to another IMS running on a different OS (Windows 
XP) when a new COI is dynamically created. 

 
We developed a demonstration system for the JBI PI meeting. The demonstration illustrated a set 
of simulated ISR assets and two COIs, a surveillance COI and a time sensitive targeting task 
force COI. During the demonstration, assets would move from one COI to the other and their 
roles would change (between ISR, target tracking, and battle damage indication). The QMS 
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system dynamically adjusts the resources and application behavior to support the requirements of 
the roles. 

In preparation for the PI meeting, we ran into some challenges installing the JBI RI 1.2.6 on 
Fedora, the current version of Red Hat Linux. However, with some help from Tom Clark and 
Robert Grant to create new scripts to run the JBI RI specifically on Fedora, and some other 
configuration and version changes, we were able to get this to run successfully. 

We updated the demonstration code to integrate the membership contract. An entering 
simulated asset publishes a membership contract and the System Resource Manager (SRM) 
subscribes to it, updates its list of known assets to which it allocates resources, and reconfigures 
if needed. 

We attended the JBI PI meeting and presented the progress of our project and delivered a quad 
chart. We also presented our demonstration and poster at the demonstration/poster session on the 
evening of April 11. 

We continued development of our software going into and after the PI meeting, making the 
improvements documented in Section 5. 

We also hosted a visit by Boeing at BBN on April 29, in which we discussed synergy between 
our ICED projects. 

9.8 May 2006 

During the report period, we continued development of the QoS management system (QMS) for 
COIs. Some of the specific accomplishments in the QMS development are 
 

• Implemented interfaces and adapter code that enable assets to publish XML-based 
membership contracts to the JBI RI, thereby enabling them to enter a QMS-managed 
COI dynamically. 

• Implemented interfaces and adapters to enable the publishing of QoS policies, QoS 
policy templates, mission weights, and available and allocated resources to the JBI. 

• Created a script for easier startup of the software. 
• Added code to enable the deployment of new SRMs, LRMs, and QoS mechanisms 

dynamically using the mission manager GUI. 
• Enhanced the mission manager GUI to enable assets to be added and to deploy the 

code simulating the assets dynamically. 
• Enhanced the SRM resource allocation algorithm to enable it to handle dynamic 

numbers of assets under management and to better handle dynamic numbers of 
participants and shared resources. We will continue to refine this algorithm in the 
coming months. 

• Wrote, tested, and integrated the code to monitor resource usage. This is an enabling 
capability for the Connectivity Monitor, which we are continuing to develop. 

 
We began planning the upcoming TIM at BBN in June, including planning for a demonstration 
and planning the slide presentation. 

We updated the User’s Guide and Demonstration Script document and submitted it. 
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9.9 June 2006 

During the report period, we hosted a Technical Interchange Meeting (TIM) at BBN. During the 
TIM, we presented the status of our project, the goals for the next three months, and ideas for 
future work based on the achievements of this project. We also presented a demonstration of the 
current version of our software.  

We also continued development of the QoS management system (QMS), demonstration 
system, and user’s guide document. Among the specific improvements to the QMS software 
during the report period are: 
 

• We validated all the schemas against xsd 2.1.1 and Altova XML Spy 2006. We also 
validated all the xml against the schemas. This was to replace our parsers with the 
xsd-generated parsers, so as to increase the robustness of the system. 

• We integrated the XML-based membership contract, QoS policies, total resources and 
weight information into the system. 

• We developed the code needed to pass the membership contracts, QoS policies, total 
resources and weights XML information through the JBI RI. However, we ran into 
issues with the lack of real-time support to deliver this policy information (described 
in Section 9) reliably. Currently we offer alternatives for delivery of this policy 
information through separate channels, Notification Service, or the RI. 

• Developed code to dynamically deploy SRMs. 
• Developed the interfaces for the Connectivity Monitor and enhanced the code we 

have for monitoring and displaying usage information. 
• Integrated OCI’s OpenDDS into a subset of our demonstration. 
• Began investigating PrismTech’s DDS. 

 
We continued the interaction with Boeing that we reported in the April report to identify 
synergies between our projects and develop a complementary vision for our activities. We have 
begun writing a white paper that lays out a Tactical Information Dominance vision and a set of 
next step ideas for enabling it. 
 

9.10 July 2006 

During the report period, we made significant progress in development of the QMS software and 
a demonstration depicting the functionality of the QMS, and started packaging the software for 
release.  

Specific accomplishments for this period include: 
 

• Finished integration of OCI DDS into our QMS software and demonstration. DDS 
defines more QoS controls than the JBI RI that we were utilizing previously. 
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However, the OCI implementation of DDS only implements three of the DDS 
controls: history, liveliness and reliability. These are not sufficient to get real-time 
behavior. For example, those parameters are not sufficient to achieve differentiated 
delivery of messages based on priorities. 

• Completed the development and testing of a layered SRM that allocates shared 
resources to a set of coordinating COIs. We also made corresponding changes to the 
Mission Manager to control and demonstrate this feature of the QMS. 

• Developed edge components as reusable parts of the Connectivity Monitor. These 
edge components are self-contained code that can be assembled into a system to 
monitor resource usage. 

• Migrated communication of all the control messages to use the CORBA Notification 
service. These include control messages between the Mission Manager and an SRM 
and between assets and an SRM. The CORBA Notification Service provides more 
reliable delivery of control messages than the JBI RI because it uses different 
threads/channels for each communication path and introduces lower delay.  

• Finished scripts that automate the build and part of the run process of the QMS 
demonstration. 

• Finished development of the code and scripts that simplify the use of the QMS 
software. These include utilities that will add all the required schemas to the JBI in 
one step via a script rather than in multiple steps manually. 

• Continued the investigation of PrismTech’s DDS, which we hope will provide 
support for more of the defined DDS QoS controls. 

 
We finished the first version of the joint white paper that we are writing with Boeing and that we 
mentioned in the last report. We provided it to a set of interested AFRL personnel during the 
report period. 

9.11 August 2006 

During the report period, we developed several features of the QMS software and the QMS 
demonstration system. We worked on packaging the software for release with an eye on an 
interim delivery in September. Finally we worked on the documentation in the Users’ Guide and 
Documentation Script. 

Finished investigation of PrismTech’s OpenSplice DDS and RTI’s DDS (formerly called 
NDDS). The QMS software and demonstration already utilize OCI’s DDS, which is limited in its 
support for QoS management (implementing only three of the 22 QoS parameters, called QoS 
policies in the specification, defined by the DDS specification), an open-source version of DDS. 
We obtained evaluation copies of OpenSplice and RTI DDS to examine the support that they 
provide for QoS and how it compares to OCI’s DDS. Both OpenSplice and RTI’s DDS 
implement more of the QoS policies in the DDS specification, although not all and not to the 
same degree. The three DDS implementations differ in the OSes, middleware, and network 
protocol that they support, with some overlap. OpenDDS and OpenSplice both use TAO 
CORBA, although not the same version (OCI maintains their own TAO release). They also 
support different versions of the Redhat Linux operating system. RTI DDS uses its own 
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proprietary middleware and language to interface. It also uses UDP, thereby limiting the size of 
information to 64K or less in each packet. Because of the expense and time remaining in our 
current project (at that time), we did not integrate either of the other DDS implementations, 
although this is a possibility for future work. 

We enhanced the SRM algorithm to include the expected and actual usage of resources in its 
resource allocation calculations. Without including these factors, the SRM could sometimes 
allocate excess resources to participants in resource rich situations, even when the QoS policy (or 
other factors) prohibited them from fully utilizing them. While this is an acceptable resource 
allocation strategy, especially in situations where the number of participants are fixed, it can be 
suboptimal in a situation in which new assets arrive dynamically, since the arrival of any new 
participant requires that resources be taken from existing participants. If the existing participants 
are not utilizing the resources anyway, better to keep them in reserve (maintaining a resource 
slack) to allocate to new participants. The new version of the algorithm should result in better 
performance (fewer reallocations) with dynamic numbers of assets, but no loss in quality over 
the original algorithm. We updated the Asset Communicator interface and the membership 
schema and XML files to support the extended algorithm. The Connectivity Monitor component 
of the QMS sends the actual usage information to the SRM. Assets provide their expected usage 
information in their membership contract when they first join the QMS.  

We developed the capability to dynamically turn QMS on and off. QMS can be turned off in 
two configurations:  

 
• Enabling the simulated assets to send unmanaged data directly to the receivers at the 

C2 center.  
• Blocking the simulated assets from publishing any information.  

 
The first option is provided as a part of the Mission Manager GUI. The second option is 
available through a command line interface.  

Added calculation of the latencies involved with processing information within the IMS or 
dissemination service (Information Object in case of AFRL’s JBI RI and CORBA structures in 
case of OCI’s DDS) to our usage collection and QoS display. 

Updated the simulated UAV sender to read imagery data from files in addition to its current 
capability of generating the imagery data from in real-time MPEG2. This is useful for smaller 
scale (fewer machines) demonstrations, since it enables more simulated information providers to 
be hosted on a single machine. 

Updated the QoS Display to include additional useful information. First, it indicates the type 
of IMS that a COI is utilizing for sending data. Second, it indicates when resource usage or 
information quality (size, rate, compression, etc.) violates allocations and QoS policies, i.e., the 
displayed values turn red if the actual usage of resources or QoS attributes violates the ranges 
provided by the SRM. Finally, the GUI now also depicts the rate at which information is 
published to and consumed from an IMS and the latency values associated with sending 
information through an IMS. 

We updated the Users Guide and Demonstration Script to reflect the current state of the QMS 
and demonstration software. This is ongoing as we test and dry run the software and will 
continue into the next report period. 
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We modified the demonstration scenario to depict the resource usage in a non QoS managed 
environment. This is an enhancement that will enable us to demonstrate the benefits of QoS 
management as part of the planned demonstration next period, by selectively turning off QoS 
management and showing the behavior contrasted with QoS managed interactions. 

9.12 September 2006 

During the report period, we prepared the QMS software, demonstration software, and the Users’ 
Guide and Demonstration script for an interim v 1.0 release. This preparation included  
 

• Packaging the software using meaningful names for the directory hierarchies so that 
users can easily navigate the QMS software, demonstration software, and other third 
party software. 

• Writing make files and scripts to facilitate ease of building and deploying the 
software using a single command. For example, the QMS software and all the third 
party software (excluding JBI) can be built by executing the make command. All the 
components of the software can be deployed using one script. 

• Testing the software exhaustively to iron out as many bugs as possible. 
• Burning DVDs for easily handing over the released software.  
• Polishing (editing) the Users’ Guide and Demonstration Script to simplify the text 

with a goal of ease of use of the document with the released QMS software and 
demonstration software. 

 
Also, during the report period, we prepared for a TIM at Rome Laboratory, scheduled for 2 
October. 

9.13 October 2006 

During the report period, we visited AFRL on 2 October and held a technical interchange 
meeting with Capt Marckenson Dieujuste, our Laboratory Program Manager. Other AFRL 
personnel, including Bob Hillman and James Hanna, also attended.  

At the TIM, we presented our technical progress, demonstrated the current capabilities of the 
ICED QMS software, distributed DVDs containing the software, and distributed draft copies of 
the User’s Guide and Demonstration Script documentation. 

We attended the Systems & Information Interoperability Branch Workshop at the 
Minnowbrook Conference Center on October 24 through October 27. Joe Loyall led a breakout 
session on QoS Enabled Dissemination. Copies of the organizing materials were distributed to 
attendees. Copies of those materials and outbrief materials were delivered to AFRL at the 
meeting. 

9.14 November 2006 

During the report period, we identified alternative approaches to multi-SRM coordination. 
Approach possibilities include 
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• SRMs allocate for specific sets of resources and send allocations directly to the local 

resource managers of clients using those resources. This requires careful coordination 
of when LRMs respond to resource allocations and overlaying a transaction process 
or some other means to avoid race conditions. 

• SRMs follow a strict hierarchy, whereby SRMs at higher levels (such as those 
associated with communities of action) push policy to SRMs at lower levels (such as 
those associated with communities of interest). This requires defining the nature of 
the SRM to SRM policy. 

• SRMs coordinate through negotiation. This requires an SRM discovery mechanism 
and negotiation protocol, as well as ensuring that the negotiation can be conducted in-
line and meet real-time requirements. 

 
We continued to work with AFRL Vanderbilt, Boeing, and IHMC to put together a draft project 
plan for QoS enabled dissemination based on the breakout session at the Systems & Information 
Interoperability Branch Workshop at the Minnowbrook Conference Center on October 24 
through October 27.  

9.15 December 2006 

During the report period, we continued to design an approach to multi-SRM coordination, 
concentrating on a strategy in which SRMs are arranged in a hierarchy and SRMs at higher 
levels (such as those associated with communities of action) push policy to SRMs at lower levels 
(such as those associated with communities of interest).  

We also continued to define strategies for multi-resource provisioning, exploring a knapsack 
approach and a greedy approach, investigating their orders of complexity and relation to known 
optimization techniques, and searching the literature for viable approaches to this known-to-be-
complex problem. 

Working with AFRL, Vanderbilt, Boeing, and IHMC, we put together a first complete draft of 
a project plan for QoS enabled dissemination.  

9.16 January 2007 

During the report period, we investigated several algorithms for multi-resource allocation, 
including the following: 
 

• A brute force algorithm that explores the full space of combinations of applications 
and QoS levels. This algorithm is guaranteed to produce the optimal (i.e., highest 
utility) choice of applications and QoS levels that will fit a particular availability of 
resources. However, in worst case it can take exponential time in the number of 
applications and QoS levels for each application. We added two optimizations that 
prune the search space significantly in many cases. 

• An algorithm, based on a paper by Toyoda, which provides an approximate solution 
to multi-dimensional knapsack type zero-one programming problems.  
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• A dynamic programming algorithm. 
 
We developed a simulator for comparing the algorithms, and prototyped the first two of the 
above algorithms. The simulator generates random sets of scenarios containing a number of 
applications, QoS levels, and resource usage. We are using the simulator to compare the 
approximate solutions of the second algorithm to the optimal solutions and the speed of the 
algorithms. 

We began prototyping the third algorithm also and began identifying the characteristics of 
scenarios in which each algorithm performs more or less well. 

We responded to feedback from AFRL on the draft project plan that we have put together for 
QoS enabled dissemination (along with Vanderbilt, Boeing, and IHMC).  

9.17 February 2007 

During the report period, we continued our investigation of multi-resource allocation algorithms. 
In the last report period, we had prototyped a brute force algorithm that walks a tree of 
applications and service levels to find an optimal combination of applications and service levels. 
Optimality is defined by a combination of applications and service levels that has the highest 
utility among those that are feasible within the available resources. Since the brute force 
algorithm is exponential, Θ(qa), we implemented two strategies that prune the search tree: first 
by pruning subtrees that are clearly not feasible and pruning subtrees that cannot lead to a higher 
utility than a feasible solution that has already been found.  

During the current report period, we continued analyzing the Optimizing Brute Force and 
other algorithms. Analysis of the Optimizing Brute Force algorithm indicated that – on a set of 
randomly generated scenarios with a varying number of applications, but a fixed number (3) of 
service levels – the algorithm can return an optimal allocation within a few seconds up to 
approximately 50 applications. After that, the time increases exponentially, as shown in the 
following graph: 
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Varying both the number of applications and the number of service levels, as in the following 
graph, indicates that the performance is reasonable up to about 10 of each. 
 

 
 

The Optimizing Brute Force algorithm is still exponential in the worst case, O(qa), but is 
significantly quicker in most scenarios. The non-optimizing brute force takes several hours to 
handle 20 applications with 3 service levels, whereas in 100 randomly generated scenarios of 
that size, the worst observed time for the Optimizing Brute Force was 45 milliseconds. 
Furthermore, the non-optimizing brute force algorithm has a much steeper execution time growth 
curve in the usual case. Going from 10 applications to 20 applications with the non-optimizing 
brute force goes from a runtime of approximately 250 ms to over 2 1/2 hours, approximately 
36,000x. In contrast, going from 10 applications to 20 applications with the Optimizing Brute 
Force goes from 4 ms worst observed time to 45 ms, approximately 11x.  

Also during the previous report period, we had implemented a Greedy Approximation 
algorithm, mapping the multiple resource allocation problem to a 0-1 integer programming 
problem and adapting an algorithm from a paper by Toyoda. During the current report period, we 
simulated the greedy algorithm on a set of randomly generated scenarios. The results, illustrated 
in the following two graphs, showed that the Greedy Approximation algorithm finds a solution 
much quicker (O(a2qr); up to 1200x faster for 110 applications) than Optimizing Brute Force, 
and the solution is a median of approximately 75% of optimal. 
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However, the analysis also pointed out a set of scenarios in which the Greedy Approximation 
algorithm performed particularly poorly. As illustrated in the following graph, for those 
scenarios (called Greedy Achilles Heel or GAH scenarios), the algorithm returned solutions that 
had a median of 30-40% of optimal: 
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The common attribute of those scenarios is that they included a single (or small number of) 
high priority applications that used most of a highly contended resource. The Greedy 
Approximation algorithm uses an effective gradient ratio of utility increase divided by resource 
usage and a penalty vector that increases the cost of using resources as they get scarce. We added 
an optimization that performed a quick analysis of how heavily resources are used by the 
applications and assigned initial values in the penalty vector to represent the projected contention 
for the resources. This optimization improved the performance of the algorithm on the GAH 
scenarios back to a median of 75-85% of optimal. 
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The runtime of the greedy algorithm is still O(a2qr), although shifted upward by a constant 
multiplier. The following graph shows that, on the same set of random scenarios as before, the 
greedy algorithm with initial penalty is approximately 600x faster than Optimizing Brute Force 
on 110 applications (versus 1200x for the version without an initial penalty). 
 

 
 

Also during the report period, we implemented a third multi-resource allocation algorithm. 
This algorithm, called Dynamic Programming for 0-1 Multi-Dimensional Multi-Constraint 
Knapsack Problem, or simply MMKP, maps the problem to a 0-1 knapsack problem and adapts 
dynamic programming to solve it. Dynamic programming relies on breaking a problem into 
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optimal subproblems, i.e., if solutions to the subproblems are optimal, then the solution to the 
main problem is optimal. In this case, we break the multi-resource allocation into subproblems as 
follows: 

 

 
In English, the benefit (B[i,r]) of some point in the tree where there is the choice of deploying 

an application and service level pair (denoted i) that uses ri amount of resources, is 
 

• If there are enough resources (ri <= r) to deploy the application and service level 
choice at i, then it is whichever of deploying i or not deploying i that results in the 
maximum benefit. Deploying i (B[i-1, r-ri] + bi) increases the utility by bi but goes on 
to try to allocate the rest of the applications in the fewer resources, r-ri. Not deploying 
i (B[i-1, r]) moves on in the tree to allocate the rest of the application-service level 
pairs with the available resources, r.  

• If there aren’t enough resources to deploy i, then it moves on to allocate the rest of the 
application-service level pairs with the available resources, r. 

The runtime of the MMKP algorithm is O(aqr), where a is the number of applications, q is the 
number of service levels, and r is the number of distinct resource levels. Varying only the 
number of applications, as before, the runtime grows approximately linearly. 

 
Quantization of the resources is important in this algorithm. The above graphs used a 0.1 

quantization of resources, where resources are allocated in tenths. With this quantization, the 
same set of random scenarios as before provides solutions with a median between 35-40% of 
optimal. 

B[i, r]  =
max (B[i-1, r], B[i-1, r-ri] + bi)if ri <= r

B[i-1, r]else
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A finer quantization could result in more optimal solutions, but would also result in a larger 

search space and slower time to reach a solution. 
During the report period, we also investigated different ways in which SRMs could be layered 

to provide effective allocations and QoS policies. In our earlier work presented at the TIM on 
Oct 2, 2006 at AFRL, we had described and prototyped a layered distributed approach where 
there was one SRM per COI (SRM-COI) and one SRM per COA (SRM-COA). SRM-COI 
allocated resources and sent policies to the clients sharing resources within a COI; and SRM-
COA allocated resources and sent policies to the clients sharing resources across COIs. Each of 
these SRMs communicated directly with the LRMs associated per client in the COIs.  
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This approach has the advantages that it is scalable and all SRMs utilize the same algorithm. 
However, it has to be carefully managed or can lead to race conditions. An LRM could receive 
allocations and policies from all SRMs but not in the order in which they were sent. 
Alternatively, an LRM could get policy from one SRM and allocations from another or vice 
versa. If the LRM acted on every message, it could lead to thrashing or unintended behavior. 

To overcome these issues, we investigated the following alternate approaches to cooperating 
SRMs: 
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1. Hierarchically Layered SRMs. Under this approach, SRMs are hierarchically layered. 
SRMs for COAs construct policies, including allocations for resources shared between COIs, and 
sends the policies to COI level SRMs. COI SRMs then allocate resources and send policies and 
allocations to LRMs. Since only COI level SRMs direct LRMs, the possibility for race 
conditions is potentially eliminated. However, the SRMs at different levels are now different 
with different algorithms and the policy sent from a COA SRM to a COI SRM is different from 
that sent from a COI SRM to an LRM. 
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2. Peer-to-Peer SRMs with Negotiations. In this approach, SRMs reside only in COIs. SRMs 
negotiate policies and allocations with other SRMs for resources shared across COIs. The 
information exchanged in a negotiation needs to include the priorities of clients in a COI, the 
priority of a COI, and the resources that a client in a COI shares with other COIs. The benefit of 
this approach is that there are no supervisory SRMs. However, this approach could potentially 
require exchange of significant state information for negotiations; requires a discovery service 
for SRMs to discover other COIs with whom they are going to share resources; and needs a 
mediator or default policy in case negotiations do not converge. 
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3. Layered Distributed SRM with Transactional Semantics. This is an extension to our 

previous approach, which handles race conditions by providing transactional semantics on policy 
processing in LRMs, similar to transactions in databases. This approach would handle the 
possibility of race conditions, but adds complexity into the LRM and could adversely impact the 
performance of the system.  
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Our current plan is to prototype the hierarchically layered SRMs of approach 1. 
Also during the current report period, we improved the simulator that we reported on last 

period, to add more options for scenario generation and simulation. The simulator and scenario 
generator were used for all the experiments described above. 

We began planning and preparing for a technical interchange meeting at AFRL. The meeting 
will take place in early March and will be reported on in next month’s report. 

We held a telecon with AFRL and other QED planners (Vanderbilt, Boeing, and IHMC) to 
review the draft project plan that we have developed. 

We also began working on our paper for the SPIE conference, Defense Transformation and 
Net-Centric Systems 2007, which we will be submitting next report period. 

9.18 March 2007 

During the report period, we began implementing the multi-resource allocation algorithms in the 
system resource manager (SRM) component. We created a shell for the SRM into which 
algorithms can be inserted and implemented the Greedy Approximation algorithm, described in 
last month’s report.  

We also began designing and developing a demonstration for the April PI meeting. The 
demonstration will show the multi-resource allocation capability and will include displays 
illustrating the effects of QoS management and the internal behaviors of the QoS management 
system. 

During the report period, we visited AFRL on 2 March and held a technical interchange 
meeting with James Hanna and Robert Hillman. The presentation from this TIM was uploaded to 
Jiffy on 5 March.  

Also during the report period, we began working on our presentation, poster, and quad chart 
for the PI meeting. We also finished writing our paper for the SPIE Defense Transformation and 
Net-Centric Systems 2007 [14]. We ran some additional experiments on the QMS software, 
graphed the results, and incorporated them into the paper.  

We continued working on the QED plans. We held a telecon with Vanderbilt, Boeing, and 
IHMC, created a strawman architecture from that telecon, and planned face-to-face meetings at 
the SPIE conference and at the April PI meeting. 
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9.19 April 2007 

During the report period, we continued our development of multi-resource allocation algorithms 
for the QoS management system. We implemented a version of the Greedy Approximation 
algorithm in the QMS’s system resource manager. We also developed enhanced resource and 
behavior monitoring capabilities, and an enhanced set of displays to depict the application and 
QMS behavior in an information space. The enhanced allocation, management, and monitoring 
capabilities were showcased in the demonstration software that we developed for the PI meeting. 

The enhanced displays depict the clients in an information space and the internals of the 
system resource manager (SRM). The client display shows which information space a publisher 
is publishing to and illustrates when a client moves between information spaces. The SRM 
display shows several views: a network, a resource and a client/application view. The network 
view shows the network topology, illustrates how data flows from a publisher to a consumer via 
the IMSs, and shows the number of resources needed and allocated along each path. The 
resource view depicts the total amount of each resource allocated across all clients. The 
client/application view depicts all the resources allocated to each client.  

We also developed profiler software that measures the resource (CPU and bandwidth) use of 
an application. We used the profiler software to measure the resource usage of each client and of 
the IMS. The profiler collects CPU usage using the rusage system call and bandwidth by 
monitoring the READ and WRITE system calls made on INET sockets. 

During the reported period, we also upgraded our software to use the current version of 
ACE/TAO (version 5.5.7/1.5.7) and the Linux operating system (Fedora Core 6). 

We designed and developed a software demonstration showcasing the use of our enhanced 
system resource manager with multi-resource allocation and the new displays described above, 
in a dynamic information space scenario. The demonstration had two information spaces, the 
first with two publishers and one consumer and the second with one publisher and one consumer. 
The QMS allocated resources across both information spaces with multiple shared resources. 
During the demonstration, we changed the roles of clients and highlighted the corresponding 
reallocation of resources in response. We also moved clients from one information space to the 
other and again demonstrated the automated reallocation of resources in response. The 
demonstration illustrated managed predictable information delivery resulting from QMS control 
throughout the demonstration. To clearly illustrate the benefit of QMS management, we also 
demonstrated turning the QMS off and allowing the information spaces to run without the benefit 
of QMS control (with contrasting unpredictable and worse performance). 

We attended the JBI PI meeting, presented the progress of our project, and delivered a quad 
chart. We also presented our demonstration and poster at the demonstration/poster session on the 
evening of April 11. 

We continued our work on QED planning. We conducted two face-to-face meetings with 
Vanderbilt, Boeing, and IHMC at the SPIE conference and several conference calls at other 
times. We created a strawman architecture for the QED capability and led a QED planning 
meeting at the OIM PI meeting during which we presented and discussed the architecture. 
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9.20 May 2007 

During the report period, we worked on developing and evaluating algorithms for managing 
resources that are shared across information spaces. In previous work, we developed algorithms 
that assign QoS levels to clients and QoS control points within information spaces, considering 
the multiple resources that might be used by those QoS levels. This new investigation considers 
that some of the resources used within an information space might also be simultaneously used 
by clients in other information spaces. 

In order to build upon our multi-resource algorithms, our initial approach uses a two-phased 
algorithm. The first phase identifies the resources shared between information spaces and divides 
them between the information spaces. The second phase then runs the multiple-resource 
algorithms we developed earlier (e.g., the Greedy Approximation or Optimizing Brute Force) 
within each information space, with each information space only considering its allocation as the 
total available of the shared resources. 

We have identified three first phase algorithms to evaluate: 
 

1. Even Splitter – Each information space is given an even amount of each shared 
resource. For example, if two information spaces are sharing a resource X, each 
would be allocated half of X. 

2. Weighted Splitter – Each information space is given a share weighted by a factor 
that can be provided by a commander or computed from the relative priorities of the 
information spaces. 

3. Dynamic Approximation – The approximation algorithm is run on a subset of 
control points, i.e., those that share resources across the information spaces, to 
calculate the amount of each shared resource allocated to each information space.  

 
The first two of these are simple approaches that serve two purposes. First, they are simple to 

implement, scalable, and likely to be sufficient for some situations. For example, an even split 
might be sufficient for information spaces with relatively uniform makeup and equal priorities. 
The weighted split might be sufficient for information spaces with significantly different 
priorities. Second, they serve as baselines against which to evaluate the third splitting algorithm, 
i.e., to see whether the additional dynamic processing to enable the third splitting provides 
significant improvement over the static splitting of the first two approaches and in what types of 
scenarios. 

These algorithms can be run in a hierarchical or in a peer-to-peer distributed fashion. In the 
hierarchical configuration, a cross-information space QoS manager layered above the 
information space QoS managers would perform the first phase algorithm and provide the 
allocation computed as the total amount of resources available to each information space QoS 
manager. In the peer-to-peer configuration, each information space QoS manager runs 
algorithms for both phases. Since the first phase is run with the same inputs (i.e., the set of 
resources shared between information spaces and the control points and QoS levels using them), 
they each come up with the same results. They then run the second phase to calculate the QoS 
levels for control points within the information space, constrained by the amount of shared 
resources they allocated to themselves in the first phase. 
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As another set of baselines, we also prototyped two “global” algorithms. The first runs the 
Optimizing Brute Force over the set of all control points and QoS levels across all information 
spaces. The second does the same using the Greedy Approximation algorithm that we developed 
previously. These algorithms implement a centralized QoS management system, with global 
knowledge of all the information spaces, their control points, and the resources they share. We 
created these to generate baselines against which to compare our multi-information space 
algorithms. The centralized Optimizing Brute Force approach will provide us a comparison 
measure of the best, or most optimal, allocation possible, while the centralized Greedy 
Approximation provides a comparison measure to the speed and optimality of a centralized 
algorithm.  

Although there are certain scenarios in which a centralized QoS management approach might 
be acceptable, in general it will not scale as well as the distributed approach, since the 
performance of the allocation algorithms is based on the number of control points and QoS 
levels. 

Therefore, we are concentrating on the distributed algorithms for our multi-information space 
QoS management R&D activities, but benchmarking centralized algorithms for comparison and 
baseline purposes. 

We also defined a set of experiments to evaluate the algorithms, and a set of metrics to collect 
from the experiments. We plan to generate a large enough set of random scenarios (~10,000 with 
a variety of combinations of available resources) to get sufficiently representative sets of 
scenarios, ranging from a few shared resources up to many shared resources, with resource 
scarce to resource rich scenarios, and with few feasible allocations up to many feasible 
allocations. We will collect metrics about the scenarios to evaluate the coverage and to help 
group them into subsets, based on metrics such as the percentage of resources shared between 
information spaces, measures of resource contention, and percentage of feasible solutions. 

We plan to run several combinations of first and second phase algorithms and evaluate their 
performance (speed and optimality of the result) on different subsets of the scenarios. 

We continued to investigate strategies for including QMS capabilities as part of the client side 
libraries of the JBI reference implementation (RI). We have identified three approaches, varying 
in the amount of capability packaged and in the effort involved in packaging it. We are working 
on a technical report describing these approaches. 

9.21 June 2007 

During the report period, we conducted experiments to evaluate the multi-phase resource 
allocation algorithms for managing resources that are shared across information spaces. As a 
reminder, the allocation algorithms that we have developed (described in more detail in last 
month’s report) are two-phase algorithms, in which the first phase identifies the resources shared 
between information spaces and divides them between the information spaces. We have 
developed three first phase algorithms: 
 

1. Even Splitter – Each information space is given an even amount of each shared 
resource. For example, if two information spaces are sharing a resource X, each 
would be allocated half of X. 
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2. Weighted Splitter – Each information space is given a share weighted by a factor 
that can be provided by a commander or computed from the relative priorities of the 
information spaces. 

3. Dynamic Approximation – The Greedy Approximation algorithm we developed 
earlier (described in more detail in February 2007’s report) is run on a subset of 
control points, i.e., those that share resources across the information spaces, to 
calculate the amount of each shared resource allocated to each information space.  

 
The second phase then runs the multiple-resource algorithms we developed earlier (i.e., the 
Greedy Approximation or Optimizing Brute Force13) within each information space, with each 
information space only considering its allocation as the total available of the shared resources. 
For the remainder of this report, we use “approximation” and “greedy” interchangeably to refer 
to the Greedy Approximation algorithm. 

Experimental design. We designed our experiments to enable us to run the algorithms on a 
large enough number of randomly generated scenarios to ensure that we would have a significant 
number of scenarios with various characteristics (e.g., small to large amount of resource 
contention, small to large percentage of feasible allocations, and varying amount of resources 
shared between information spaces).  

The above multi-phase algorithms (six combinations in all, each of the three first phase 
choices combined with each of the two second phase choices) are the experimental cases. As two 
baselines against which to compare, we used “centralized” versions of the Optimizing Brute 
Force and the Greedy Approximation algorithms that we developed previously. The centralized 
Optimizing Brute Force approach provides a comparison measure of the best, or most optimal, 
allocation possible, while the centralized Greedy Approximation provides a comparison measure 
to the optimality and speed of a centralized algorithm. 

Our experiments consisted of executing the algorithms on 10,000 randomly generated 
scenarios. Each scenario consists of ten applications, each with three service levels (high, low, 
and starvation), with each service level utilizing three resources.14 The scenario generator varies 
the resources used by each service level, the amount of each resource used by each service level, 
and the utility associated with each service level.  

We conducted the experiments using a simulator that takes each scenario and divides the 
applications between two information spaces, putting half (i.e., five) in each. It then runs the 
first-phase algorithms to divide the shared resources followed by the second-phase algorithms for 

                                                           
13 Both of these algorithms are described in more detail in February 2007’s status report. The subtree-pruning brute force 

algorithm walks a tree of applications and service levels to find an optimal solution (i.e., feasible with the highest utility), 
pruning subtrees that are not feasible or are suboptimal to reduce the search space. The Greedy Approximation algorithm maps 
the multiple-resource allocation problem to a 0-1 integer programming problem and allocates resources using an effective 
gradient ratio of utility divided by resource usage. Subtree-pruning brute force returns an optimal solution but can take 
exponential time to execute. Greedy approximation is much quicker, but returns an approximate (i.e., not necessarily optimal) 
solution. 

14 We chose the number of applications (a) and service levels (q) to support running a large number of scenarios against the 
centralized brute force algorithm baseline, which takes O(qa) to run. Ten applications with three service levels results in a 
search space of 59,049 possible allocations. Twenty applications with the same number of service levels drive the search space 
up to over 3 billion possible allocations. 
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each information space to choose an allocation. It also runs the two centralized algorithms on 
each information space to gather the baseline metrics. 

The number of applications sharing available resources and the percentage of resources shared 
across information spaces varied from scenario to scenario, but are affected not only by the 
factors that the scenario generator varies (i.e., resources used by each service level, the amount 
of each resource used by each service level, and the utility associated with each service level) but 
also by the total number of resources available. To attempt to get good representative coverage 
over a variety of possible scenario configurations, we generated 10,000 scenarios each for a 
varying number of total available resources: 30, 70, 110, 150, and 190 resources. This results in a 
total of 50,000 scenarios. 

Summary of results. We have generated large amounts of experimental data and are still 
evaluating and summarizing the results. This status report will present a brief summary of some 
of the important experimental results and analyses we have performed. We will present a more 
complete description in a separate report. 

Figure 65 illustrates the performance of the six multi-phase algorithms with respect to 
choosing an allocation, compared to the optimal solution (100% optimality) of the centralized 
Optimizing Brute Force and the performance of a centralized version of the approximation 
algorithm (called Greedy-All in the figure). All multi-phase algorithms perform well, producing 
allocations that are a median of nearly 90% or more of optimal. The multi-phase approximation 
algorithm (running the approximation algorithm during the first and second phases) does nearly 
as well as the centralized approximation algorithm, and both have medians within a few 
percentage points of optimal (96% and 97% of optimal, respectively).  

Figure 65(a) evaluates the relative contribution to the performance of each of the first phase 
algorithms. Since this graph uses the Optimizing Brute Force, which produces an optimal 
allocation, as the second phase of the three multi-phase algorithms, any allocations less than 
100% optimal are due to the first phase. The approximation first phase algorithm outperforms the 
other first phase algorithms by a significant amount, with a median of 100% optimality versus 
91% optimality of each of Even Splitter and Weighted Splitter, and with considerably less 
variance (the majority of solutions are above 80% of optimal). 

While the graphs in Figure 65 do show considerably good performance for the multi-phase 
algorithms, they also show some outliers indicating isolated scenarios in which the algorithms 
performed poorly. As part of our experimental process, we identified a set of metrics with which 
we could characterize the scenarios and study how these characteristics impact the optimality of 
allocations produced by the multi-phase algorithms. The goal is to look for characteristics of 
scenarios for which the algorithms perform particularly well (close to optimal solutions and no 
outliers) or particularly poorly (lower utility solutions and more outliers). Some of the metrics 
that we collected follow: 
 

A. Percent of feasible solutions:  As described above, each generated scenario has 
59,049 possible solutions. Only some of these are feasible, i.e., fit within the amount 
of resources available. The number of infeasible solutions is a good measure of the 
level of contention in a scenario. That is, the higher the percentage of feasible 
solutions, the lower the contention for resources in the scenario. 
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B. Highest percent of applications not-starved in any feasible solution: As contention 
for a resource increases to the point that there is not enough available to meet the 
requests of all applications, it is conceivable that only some of the applications 
requesting a resource will be able to run. The others will be starved (i.e., receive no 
resource allocation). This metric looks for the feasible solution that runs the highest 
number of applications (whether that solution is the highest utility solution or not15) 
and collect the number of applications running as a percentage of the number 
available to run. 

C. Highest percent of applications requesting the most-shared resource: In general, as 
more applications request a given resource, the contention for the resource 
increases. Therefore, as another measure of contention in a given scenario, we 
compute the largest number of applications requesting a single resource. We collect 
the number of applications as a percentage of the number available to run. 

D. Highest percent of resource requested by applications (in any service level) 
requesting the most-shared resource: This metric looks for the highest amount of a 
resource requested in any possible allocation. For example, if a scenario has an 
allocation in which 500% (i.e., 5x of what’s available) of a resource is requested and 
another scenario has no more than 95% of any resource requested, the first scenario 
indicates a more severe potential bottleneck than the second. 

                                                           
15 The utility of a solution is based on not only the number of applications that are running but also on the QoS levels at which the 

applications run, so a solution that runs fewer applications but at higher QoS levels could be of higher overall utility than one 
that runs more applications but at lower QoS levels. 

(a) Multi-phase algorithm with various first phase and brute 
force (optimal) second phase compared to centralized brute 
force (100% optimality) and centralized approximation 
(Greedy-All).

(b) Multi-phase algorithm with various first phase and 
approximation second phase compared to centralized 
brute force (100% optimality) and centralized 
approximation (Greedy-All).  

Figure 65: Optimality of the multi-phase algorithms compared to the centralized Optimizing 
Brute Force (100% optimal) and centralized approximation (labeled as Greedy-All in the 
graphs). 
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E. Percentage of resources shared across the information space: This metric affects 
the size of the space over which the first phase algorithms operate. It also indicates a 
measure of contention for those resources shared between information spaces. 

 
The effects of levels of contention on algorithm optimality. Each metric above measures a 

different aspect of contention for resources. We analyzed the effect of each of these contention 
metrics on the solutions provided by the six multi-pass algorithms compared to the optimal 
solution (provided by the centralized Optimizing Brute Force baseline) and the solution provided 
by the centralized approximation algorithm. The results show that the two algorithms with the 
Dynamic Approximation first phase perform the best, i.e., Dynamic Approximation-Optimizing 
Brute Force and Dynamic Approximation-Greedy Approximation, with solutions near optimal 
under a variety of contention levels and types. The results also show that the choice of second 
phase has less impact, with the Optimizing Brute Force second phase providing only slightly 
more optimal solutions.16 

The following paragraphs and graphs describe the results for the above metrics in more detail. 
Figure 66 shows that the multi-phase algorithms perform well even under high levels of 

contention. The Dynamic Approximation first phase algorithm is clearly the best of the first 
phase algorithms, performing well with the Optimizing Brute Force and Greedy Approximation 
second pass. The Dynamic Approximation first phase algorithm with either the Optimizing Brute 
Force or Greedy Approximation second phase performs very well with even 95% infeasible 

                                                           
16 Our earlier experiments (reported in the February 2007 status report) show the speed comparison of brute force and 

approximation. While brute force is sufficiently fast for the small information spaces we have in these experiments, 
approximation scales better providing solutions much faster with larger information spaces, i.e., those with more 
clients/applications/control points. 

(a) Multi-phase algorithms with various first phase and brute 
force (optimal) second phase

(b) Multi-phase algorithms with various first phase and 
approximation second phase  

Figure 66: The effect of the number of feasible solutions (metric A) on the optimality of the multi-
phase algorithms.  
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solutions (5% feasible solutions), with better than 95% optimality. Even with nearly zero feasible 
solutions, both multi-phase algorithms with the Dynamic Approximation first phase provide 90% 
optimal solutions or better. 

Figure 67 illustrates the effects of the second contention metric. As would be expected, when 
feasible solutions don’t starve many applications (i.e., the % of non-starved applications is high), 
the % optimality of the multi-phase algorithms is higher. As Figure 67 shows, when the % of 
non-starved applications is 60% or above, all of the algorithms provide solutions 90% of optimal 
or higher. Again, the Dynamic Approximation first phase followed by either the Optimizing 
Brute Force or Greedy Approximation second phase perform best of all the multi-phase 
algorithms. Furthermore, they perform significantly better when contention is higher, able to 
produce solutions with a median of 88%-89% optimality with as much as 50% of applications 
being starved, and they perform as well or better than the centralized algorithms. In contrast, the 
median optimality of solutions produced by using an even or weighted split as the first phase 
declines to 50% in the high contention situations. 

As illustrated in Figure , the median percent optimality decreases as the number of 
applications requesting a bottleneck resource increases. The performance of the multi-phase 
algorithms using the Dynamic Approximation first phase is still quite good, producing solutions 
that are close to 90% of optimal (and close to the centralized algorithm) even when as many as 
60% of the applications are requesting a single resource. The other first phase algorithms do not 
fare as well, declining to 72% of optimal as contention for the bottleneck resource increases. 
Furthermore, the slope of decline in optimality is steeper for the Even and Weighted Splitter 
algorithms than for the Dynamic Approximation algorithm. 

(a) Multi-phase algorithms with various first phase and brute 
force (optimal) second phase

(b) Multi-phase algorithms with various first phase and 
approximation second phase  

Figure 67: The effect of application starvation (metric B) on the optimality of the multi-phase 
algorithms. 
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While Figure  illustrates the effects of a lot of applications requesting a specific resource, it 
does not take into consideration how much of the resource they collectively request. In contrast, 
Figure  illustrates the effect of the amount of a single, most requested (by quantity requested) 
resource on the optimality of the algorithms. The x-axis in the graphs represent the amount 
requested of the most requested resource, varying from half of the resource capacity requested 
(0.5x) to 3.5x more (i.e., 350%) of the resource capacity. As would be expected, when less than 
the resource capacity (< 1.0) is the most requested, i.e., the scenario represents a resource rich 
environment, all algorithms produce near optimal solutions. As the amount requested increases, 
the optimality declines, although the algorithms with the Dynamic Approximation first phase 
still produce near optimal results and results close to the centralized algorithm, with a median 
percent optimality above 90%. This particular metric does not seem to affect the outcome of the 

(a) Multi-phase algorithms with various first phase and brute 
force (optimal) second phase

(b) Multi-phase algorithms with various first phase and 
approximation second phase  

Figure 69: Percent of optimality comparison of algorithms using metric D – highest amount of 
resource requested by applications (in any service level) requesting the most-shared resource 

(a) Multi-phase algorithms with various first phase and brute 
force (optimal) second phase

(b) Multi-phase algorithms with various first phase and 
approximation second phase  

Figure 68: Percent of optimality comparison of algorithms using metric C – highest percentage of 
applications requesting the most-shared resource. 
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second phase algorithm much, as the Dynamic Approximation-Greedy Approximation algorithm 
(in Figure (b)) performs nearly as well as the Dynamic Approximation-Optimizing Brute Force 
algorithm (in Figure (a)). 

Metric E highlights the differences in efficacy of the choices for the first phase algorithm. As 
illustrated in Figure 68, as the amount of resources shared between information spaces increases, 
the median percentage of optimality of the Even Splitter and Weighted Splitter first phase 
algorithms declines significantly, to as little as 42% of optimal. The two algorithms that use the 
Dynamic Approximation first phase (Dynamic Approximation-Optimizing Brute Force and 
Dynamic Approximation-Greedy Approximation) perform very well, with a median percentage 
of optimality of about 90% and closely tracking the centralized algorithm. 

The experiments we have conducted and the initial results and analysis that we have done 
indicate that the multi-phase algorithm using an Dynamic Approximation first phase and either 
an Optimizing Brute Force or Greedy Approximation second phase (selected dynamically based 
on the size of the search space and the deadline for allocation) will produce good (near optimal) 
QoS solutions in many/most scenarios. We plan to continue to look for the source of outliers and 
quantify other characteristics of the algorithm (such as runtime performance). 

Packaging QMS capabilities as part of the JBI client side libraries. As reported in the last 
status report, we have begun investigating approaches for including QMS capabilities as part of 
the client side libraries of the JBI reference implementation (RI). During this report period, we 
worked on a draft technical approach describing several approaches.  

9.22 July 2007 

During the report period, we did the following: 
 

(a) Multi-phase algorithms with various first phase and brute 
force (optimal) second phase

(b) Multi-phase algorithms with various first phase and 
approximation second phase  

Figure 68: Percent of optimality comparison of algorithms using metric E – percentage of resources 
shared across information spaces. 
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• Analyzed the performance evaluation data we had gathered to attempt to identify 
characteristics of scenarios for which the approximation algorithms perform well (in 
terms of percent of optimality of the solution) and those for which they don’t do as 
well. We divided the scenarios into two categories: (1) scenarios for which multi-
phase algorithms will perform well by solutions that are close to optimal (>= 85% of 
optimal),  and (2) scenarios for which they will not (< 85% of optimal);  

• We analyzed the runtime performance of the multi-phase algorithm with our 
Dynamic Approximation as the first pass and Greedy Approximation as the second 
pass, and designed experiments to evaluate its runtime performance. 

 
Analysis of the performance evaluation data to categorize scenarios: 

In the last report, we described the experiments for evaluating the performance (percent of 
optimality) of different multi-phase algorithms and reported the results of these experiments. 
During this period, we attempted to identify specific characteristics or patterns in scenarios in the 
two categories specified above, i.e., those for which the multi-phase approximation algorithm 
returns a solution 85% of optimal or better, and those for which it returns a solution less than 
85% of optimal. If we could find a characteristic or pattern that would help identify a scenario 
before running the multi-phase algorithm, it would help us select an algorithm to run for given 
input scenarios, contentious environments, and deadlines. For example, we could select Dynamic 
Approximation for scenarios for which we expect to get close to optimal solutions and/or 
scenarios with a tight deadline to reach a solution. We could select Optimizing Brute Force for 
scenarios for which we expect the approximation to produce sub-optimal solutions and for which 
time to reach a solution is less important than reaching a close to optimal solution. 

As a reminder, we developed and evaluated six multi-phase resource allocation algorithms for 
managing resources that are shared across information spaces. These algorithms included a 
combination of three first phase algorithms: Even Splitter, Weighted Splitter and Dynamic 
Approximation, and two second phase algorithms: Greedy Approximation and Optimizing Brute 
Force. To give a little more context for understanding the work reported in this period, we are 
including one of the figures (Figure 69) from the last report, with some additional annotation. 
The figure illustrates the performance of the six multi-phase algorithms with respect to choosing 
an allocation. Figure 69a depicts the multi-phase algorithm with Optimizing Brute Force as the 
second phase, and Figure 69b depicts the multi-phase algorithms with Greedy Approximation as 
the second phase. These algorithms are compared against the baseline of running either the 
Optimizing Brute Force algorithm that always gives 100% optimality (represented in the figure 
by 100% on the Y axis) or the Greedy Approximation algorithm (called Greedy-All in the figure) 
in a centralized manner. Here centralized means we run the second-phase algorithms to allocate 
resources for all the applications from all the information spaces. As illustrated in Figure 69, any 
combination of first-phase algorithm and second pass algorithm performs well, producing an 
allocation that is a median of nearly 90% or more of optimal.  

In this reporting period, we began the analysis by computing the number of outliers17 that the 
multi-phase algorithms produced (see Figure 69). From here on, we only discuss the multi-phase 

                                                           
17 Outliers are defined as values < Q1 – 1.5 * IQR or > Q3 + 1.5 * IQR.  
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algorithms that used Dynamic Approximation as the first phase and Greedy Approximation and 
the Optimizing Brute Force as the second phase. This is because our experimentation results 
indicate that the Dynamic Approximation outperforms Even Splitter and Weighted Splitter. We 
found that 9.4% of scenarios produced outliers when Optimizing Brute Force was used for the 
second phase, and 6.7% of scenarios produced outliers when Greedy Approximation was used 
for the second phase, from a total of 50,000 scenarios. (Of these outliers, 5.1% were extreme 
outliers18 when Optimizing Brute Force was used for the second pass, and 3.5% were extreme 
outliers when Greedy Approximation was used for the second pass.) Even though the number of 
extreme outliers is relatively fewer, the total number of outliers motivated us to examine the 
cause that makes some scenarios produce outliers. Because the graphs presented in the previous 
report indicated a decline in percentage optimality as levels of contention increased, we started 
by looking at characteristics that contribute to higher contention, testing the hypothesis that high 
levels of contention are a cause of sub-optimal allocations.  

Recall that we had generated experimental data of scenarios with a varying number of total 
resources and a fixed number of applications, service levels, and resources in each service level: 
10 applications, 3 service levels, and 3 resources per service level chosen from a total varying 
from of 30, 70, and 110 resources. Each of these experimental data had 10,000 scenarios. These 
scenarios provide us a good basis for representing different levels of contention. The scenarios 
with a total of 30 resources were highly contentious as the applications had to choose 3 out of 30 
resources. In this case the contention was high because the chance of multiple applications 
requesting the same 3 resources from a total of 30 was high relative to those that had a total of 

                                                           
18 Extreme outliers as values <  Q1 – 3.0 * IQR or > Q3  +  3.0 * IQR 

(a) Multi-phase algorithm with various first phase and brute 
force (optimal) second phase compared to centralized brute 
force (100% optimality) and centralized approximation 
(Greedy-All).

(b) Multi-phase algorithm with various first phase and 
approximation second phase compared to centralized 
brute force (100% optimality) and centralized 
approximation (Greedy-All).  

Figure 69: Optimality of the multi-phase algorithms compared to the centralized Optimizing 
Brute Force (100% optimal) and centralized approximation (labeled as Greedy-All in the 
graphs). 
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110 from which to choose 3. As we increased the total number of resources from 30 to 110, the 
level of contention decreased.  

To test the hypothesis, we started examining these scenarios for median percent of optimality, 
length of (number of scenarios in) the IQR, and the percent of outliers and extreme outliers. 

The results when Greedy Approximation is used as the second pass are summarized in Table 
5. As expected, we observed that as the level of contention decreased (from 30 total resources to 
110 resources), the median percent of optimality increased. The percent of outliers and extreme 
outliers also increased. We also noticed that as the length of the IQR decreased, meaning that the 
50% of solutions from the first to the third quartile were more tightly bunched around the 
median, the number of outliers and extreme outliers increased. Similar observations were seen 
when we used Optimizing Brute Force for the second pass. The IQR is a floating window 
influenced by how tightly grouped 50% of the scenarios are. Hence, an outlier in one set of 
experiments may not be an outlier in another set of experiments, depending on the IQR window. 
Therefore, dividing the scenarios solely based on outliers is misleading.  

 
Table 5: Trend in median percent of optimality, IQR, and outliers as the number of total resources 
increases from 30 to 70 to 110 in the multi-phase algorithm with Greedy as the second pass. 

Approx+Greedy 30 Resources 70 Resources 110 Resources 

Min % of optimality 11.49425 30.16701 24.48759 

Median % of optimality 88.95260 94.66913 96.15848  

IQR 13.62601 9.149613 7.744562 

1st Outlier 61.14584 75.74697 80.02162 

# of Outliers 168  461 642 

% of Outliers  0.336 0.922 1.284 

1st Extreme Outlier 40.70684 62.02256  68.40478 

# of extreme outliers 4 251  495 

% of Extreme Outliers 0.008 0.502  0.99 

 
Consequently, instead of focusing solely upon the outliers, we divided the scenarios into two 
groups: the scenarios that result in >=85% optimality and the scenarios that result in <85% 
optimality. Then we examined the distribution of scenarios across these two groups for different 
contentious environments, as defined by the contention metrics listed in Table 6. We observed a 
significant difference in the values obtained for some of the metrics (percent of feasible 
solutions, maximum resource requested by the highest percent of applications, percent of 
resources shared across the information spaces). However, we also noticed a significant overlap 
in the values for the scenarios for almost all the metrics. The overlap of values for two of the 
metrics is shown in Figure 70. For example, Table 6 shows a significant gap between the median 
percent of feasible solutions (metric 1) in the highly optimal and in the sub-optimal categories 
(42% versus 12%). However, as Figure 70 shows, selecting any scenario and looking at its 
percentage of feasible solutions, it could fall into either category because of the significant 
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overlap in their spread. Therefore, these metrics do not appear to be useful for predicting how 
close to optimal the algorithm will return. For now, we will use the total number of applications, 
which affects the runtime, to decide whether we want to use Optimizing Brute Force as the 
second pass or Greedy Approximation as the second pass.  
 

Table 6:  Examining metrics as indicators for different categories of scenarios 
Approx+Greedy 
(50,000 total 
scenarios) 

≥ 85%  
(45,538 
scenarios 

< 85%  
(4462 
scenarios) 

1. Median % of feasible 
solutions 

42% 12% 

2. Highest % of non-
starved apps 

100% 90% 

3. Max % of apps 
requesting the most 
shared resources 

20% 30% 

4. Max resource 
requested by the highest 
% of apps 

1.5x 1.8x 

5. % of resources 
shared across the 
infospaces 

2% 7% 

Theoretical analysis of the multi-phase algorithms (Greedy Approximation as the second phase) 
for evaluating the runtime and designing experiments to validate the theory: 

We analyzed the runtime of the multi-phase algorithms with Greedy Approximation as the 
second phase, and designed experiments to evaluate the runtime of the algorithm by varying the 

 

 
Figure 70: Overlap in two category (>=85% and < 85%) of scenarios for the values for two metrics: 
percent of feasible solution; and maximum resource request by highest applications requesting the 
most-shared resource 



 
 
 

  

 
 
 

126

total number of applications, number of applications shared across the information spaces, and 
the total number of information spaces. We used only Greedy Approximation as the second 
phase as the Optimizing Brute Force will result in potentially exponential runtime in the cases 
where the problem size increases.  

As a start, in order to study the impact of contention on runtime, we studied the correlation 
between the metrics that are obtained by algorithms in linear time, and the metrics obtained by 
running the Optimixing Brute Force in (potentially) exponential time. Since we will not have 
access to metrics obtained from the Optimizing Brute Force algorithm in very large scenarios, 
such as the percent of feasible solutions or the highest percentage of applications not-starved in 
any feasible solution, the correlation coefficient gives us a way to study the impact of contention 
on runtime in the cases when we cannot run the Optimixing Brute Force algorithm and hence 
cannot collect metrics from it. As illustrated in Figure 71, we observed a correlation between the 
metrics.  

Also during the report period, we revised a version of the report on packaging QMS 
capabilities with the JBI client side libraries. We plan to deliver a copy of this report next month. 

We also scheduled a technical interchange meeting to be held during the next report period.  
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Figure 71: Correlation coefficients between metrics that are gathered in exponential time and the 
metrics that are gathered in linear or polynomial time. 
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9.23 August 2007 

During the report period, we analyzed the worst case runtime of some of the multi-phase 
resource allocation algorithms and conducted experiments to measure their runtime.  

As a reminder, in the June report, we described the multi-phase algorithms that we developed 
to support information spaces that share resources. The first phase of the algorithms allocates the 
resources shared between information spaces, creating constraints on the second phase of the 
algorithms that allocate resources within each information space. We developed and analyzed 
three first phase algorithms, Dynamic Approximation, Even Splitter, and Weighted Splitter, to 
work with the Greedy Approximation and Optimizing Brute Force second phase algorithm. This 
results in six total multi-phase algorithms, from every combination of first- and second-phases:   

 
• Dynamic Approximation-Greedy Approximation 
• Even Splitter-Greedy Approximation 
• Weighted Splitter-Greedy Approximation 
• Dynamic Approximation-Optimizing Brute Force 
• Even Splitter- Optimizing Brute Force 
• Weighted Splitter- Optimizing Brute Force 

 
Our experiments reported in the June report indicated that the two multi-phase algorithms that 
used Dynamic Approximation as a first phase outperformed (in percent of optimality) the other 
algorithms.  

During this reporting period, we evaluated the runtime of the Dynamic Approximation-Greedy 
Approximation algorithm. We chose to evaluate the Dynamic Approximation first-phase 
algorithm because it outperformed the other two first-phase algorithms. We chose to evaluate the 
Greedy Approximation second-phase algorithm because it runs in polynomial time, in contrast to 
the Brute Force algorithm which runs in exponential time.  

Theoretical analysis of the multi-phase runtime.19 In previous analysis, we determined that the 
Greedy Approximation algorithm runs in O(a2qr), where a is the number of applications, q is the 
number of QoS levels, and r is the number of resources. The Dynamic Approximation first-phase 
algorithm runs essentially the Greedy Approximation algorithm, but on a subset of applications, 
i.e., only those that share resources between information spaces. Therefore, for a set of a 
applications, split over I information spaces, the Dynamic Approximation first phase takes 
O(a'2qr) where a' ⊆ a is the subset of applications that share resources between the information 
spaces. The Greedy Approximation second phase runs in max(a1

2qr, …, aI
2qr), where ai  is the 

number of applications in information space i, for i=1..I. That is, the second phase takes as long 
as the largest information space, i.e., the information space with the largest number of 
applications. 

                                                           
19 The analysis presented here was performed for the August report and did not include the pass in the Dynamic Approximation 

algorithm needed to discover the applications that share resources between the information spaces. This pass takes time ar + 
aqr and is added to the time to run the Dynamic Approximation algorithm presented in the August 2007 monthly report. The 
runtime analysis in Section 4.5.1.1 includes the time for this pass. 
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In a representative case in which, say, 10% of the total applications share resources across 
information spaces and the applications are divided evenly between the information spaces, the 
runtime would be O(1/10a2qr +(a/I)2qr). Which term dominates depends on which is larger, the 
number of applications sharing resources across the information spaces or the number of 
applications in each information space. 

In the worst case, all of the applications would share resources across information spaces (a' = 
a) and applications would not be evenly spread across the information spaces (one information 
space could have a-(I-1) applications and each of the rest of the information spaces would have 
one application each). In this case, the first phase essentially runs a centralized Greedy 
Approximation algorithm and the second phase is superfluous. The runtime in this worst case is  

 
  O(a2qr + (a-I+1) 2qr) = O(2a2qr) = O(a2qr) 
 
The Dynamic Approximation-Greedy Approximation algorithm runs in polynomial time. In 

the worst case, the runtime of the Dynamic Approximation-Greedy Approximation algorithm is a 
constant multiplier of the Greedy Approximation algorithm. However, in the usual case, we 
expect the runtime of the Dynamic Approximation-Greedy Approximation algorithm to be less 
than the centralized Greedy Approximation (i.e., Greedy-All) algorithm. 

Experimental analysis of the multi-phase runtime. Even though our analysis suggests that in 
the worst case Greedy-All should perform better than Dynamic Approximation-Greedy 
Approximation, we expect in the general case that the Dynamic Approximation-Greedy 
Approximation algorithm should run faster than the centralized Greedy-All. This is because we 
expect that in the usual case a' would be less than a and that applications would be well 
distributed among information spaces. 

We ran experiments to test the runtime of the multi-phase algorithm varying the following 
variables: 
 

1. The number of total applications 
2. The number of resources 
3. The level of contention 

 
1. The effect on runtime of varying the total number of applications 
 

The analysis above showed that the number of total applications would significantly impact 
the runtime of the centralized and multi-phase algorithms. However, we hypothesize that in the 
usual case where only a subset of applications share resources across information spaces and the 
total number of applications are well distributed between information spaces, that an increase in 
the total number of applications would impact the centralized Greedy-All algorithm more 
significantly than the two phase Dynamic Approximation-Greedy Approximation algorithm. In 
other words, we expect the multi-phase approximation algorithm to scale better than the 
centralized version. 

We conducted an experiment in which we varied the total number of applications. We used 
our scenario generator simulation software (described in earlier reports) to generate different 
scenarios as input to the algorithms. We generated scenarios that varied the total number of 
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applications from 20 to 2000. We forced a uniform distribution of applications between two 
information spaces (I=2) by dividing the applications in half, with each information space having 
half of the total number of applications (i.e., 10 to 1000 applications each). We set the scenario 
generator parameters to 3 QoS levels per application, 3 resources used per QoS level, and 110 
total number of resources. The scenario generator randomly generated the utility value for each 
QoS level, the specific resources (from the 110 available) used by each QoS level, and the 
amount of each resource used. The choice of 110 available resources (a fairly large number 
compared to the number of resources, 3, used by each application) makes it likely that the 
number of applications sharing resources across the information spaces is a subset of the total 
number of applications (i.e., the more available resources to choose from, the less likely that two 
applications will share resources). 

We generated 100 random scenarios for each value of the number of applications, ranging 
from 20 to 2000, and plotted the median algorithm runtime for each set of scenarios, as displayed 
in Figure 72. 

As the total number of applications increases, the median runtime of both the Dynamic 
Approximation-Greedy Approximation algorithm (shown with blue line and diamonds) and 
Greedy-All algorithm (shown with red line and squares) increase. The centralized Greedy-All 
algorithm outperforms the multi-phase algorithm slightly at a low number of total applications 
(up to a few hundred per information space). As the number of applications increase beyond that, 
the runtime of the multi-phase algorithm increases at a much slower rate than the centralized 
algorithm, indicating that the multi-phase algorithm scales better in terms of number of total 
applications. 
 

 
Figure 72: Median runtime of Dynamic Approximation-Greedy Approximation (Approx+Greedy) 
when we varied the number of applications from 20 to 2000. The centralized approximation 
algorithm, Greedy-All, is shown as the baseline. 
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2. The effect on runtime of varying the total number of resources 
 

Because of the linear contribution of the r term to equation (1), we hypothesize that the 
runtime of Dynamic Approximation-Greedy Approximation should change linearly as the total 
number of resources changes. 

We tested this hypothesis by conducting an experiment in which we varied the total number of 
resources. As in the experiments above, we used the scenario generator simulation software to 
generate random scenarios varying the total number of resources from 10 to 150. We set the 
scenario generator parameters to 3 QoS levels per application, 3 resources used per QoS level, 
and 50 applications. We divided the applications into two information spaces (I=2) such that 
each information space had half of the total number of applications (i.e., 25 applications). We 
used 5000 scenarios for each experimental data set and plotted the results as the boxplots in 
Figure 73. The results support the hypothesis as the graph indicates an approximate linear slope 
for the median (thick dark line) runtime as the number of resources increases. 

 
3. The effect on runtime of varying the level of contention 
 

We measure the level of contention using the following metrics, described in more detail in 
the June status report: 

 
• Percentage of applications requesting the most-shared resource. 
• Maximum amount requested of the most-shared resource. 
• Percentage of resources shared across the information space. 
 

 
Figure 73: Runtime of Dynamic Approximation-Greedy Approximation as a function of varying the 
number of resources 
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Our previous experiments (reported in June) indicate that level of contention affects the 
efficacy of the algorithms in terms of percent of optimality of the solution produced, but based on 
our analysis we do not expect the level of contention to affect the runtime efficiency of the 
algorithms much, if at all. 

We tested this hypothesis by conducting an experiment in which we generated a large number 
of random scenarios20 with various numbers of applications, with the expectation that the 
generated scenarios would cover a spectrum of levels of contention. We ran the Dynamic 
Approximation-Greedy Approximation algorithm on each scenario and plotted a regression line 
for the runtime against the level of contention. 

Figure 74 illustrates that the level of contention as defined by the first and second metrics do 
not significantly affect the algorithm runtime. Figure 74a shows that as the percentage of 
applications requesting the most shared resource increases, the runtime remains approximately 
unchanged. Likewise, Figure 74b shows that as the percentage amount requested of the most 
requested resource increases, the runtime also remains approximately unchanged.  

The declining ranges of the plotted measurements indicate that as the number of applications 
increases, the percentage requesting any specific resource declines. Though there are the same 
number of scenarios for the larger number of applications, the level of contention falls within a 
significantly narrower range. Unfortunately, this means that the generated scenarios at those 
higher numbers of applications represent a lower variety of contention possibilities, and therefore 
their regression lines are less compelling for determining the effect of contention on runtime. 
However, the full set of scenarios and the obvious lack of increase in runtime even at the higher 

                                                           
20 5000 random scenarios each with the number of applications varying from 10 to 100 (in steps of 10). The scenario generator 

parameters were set to 3 QoS levels per application, 3 resources used per QoS level, and 110 total resources. 

(a) Runtime of Dynamic Approximation-Greedy 
Approximation as a function of the highest percentage of 
applications requesting the most-shared resource

(b) Runtime of Dynamic Approximation-Greedy 
Approximation as a function of the maximum amount 
requested of the most-shared resource  

Figure 74: Runtime of the Dynamic Approximation-Greedy Approximation algorithm plotted 
against the level of contention in the scenarios. 
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range of contention of the lower regression lines provides evidence to support the hypothesis that 
contention does not affect runtime as much as other factors. 

Figure 75 illustrates the impact of an increase in the percentage of resources shared across 
information spaces. As this metric increases, it affects the runtime of the first phase (the space of 
applications the first phase runs over gets larger). As the number of total applications increases, 
the second phase comes to dominate the algorithm’s runtime and the impact of an increase in the 
number of shared resources impacts the runtime by a lesser amount. 

In summary, the analysis and experiments that we are describing during this report period 
show the following results: 

 
• The multi-phase approximation algorithm runs in polynomial time with a worst case 

runtime that is a constant multiplier of the runtime of the centralized approximation 
algorithm. 

• The multi-phase approximation algorithm scales better than the centralized algorithm 
with respect to number of applications. 

• Increasing the number of total resources affects the runtime of the multi-phase 
algorithm linearly. 

• Changes in the level of contention (as defined by the number of applications 
requesting a most shared resource and the maximum amount of that resource 
requested) have less effect on the runtime of the multi-phase algorithm than other 
factors. 

 
Figure 75: Runtime of Dynamic Approximation-Greedy Approximation as a function of the 
percentage of resources shared across information spaces 
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• The amount of resources shared across information spaces affects the runtime 
(approximately linearly) but has more effect when information spaces are small 
(containing fewer applications) than when they are large (containing more 
applications).  

 
Host a technical interchange meeting. On August 16, 2007 we hosted a TIM at BBN, 

Cambridge, MA. At the TIM, we presented a summary of progress to date and the progress since 
the last TIM, including the multi-phase QoS algorithms that we have developed for allocating 
QoS across information spaces and the efficacy evaluations of the multi-phase algorithms. We 
also described approaches toward integrating our QoS Management System (QMS) into the JBI 
client-side libraries, and delivered a draft report describing the approaches.  

Begin documenting the results of the experiments. During the reporting period, we began a 
report summarizing the design of QoS management algorithms and their experimental 
evaluations. 

9.24 September 2007 

During the report period, we continued working on a report documenting the results of the 
experiments we conducted on the QoS allocation algorithms, began designing the next version of 
the QMS utilizing these algorithms, began planning our final demonstration, and created a poster 
for the upcoming OIM SAB review.  

Documentation of the experimental results. In the previous status reports, we described 
experiments that we conducted on our multi-resource multi-QoS allocation algorithms, 
evaluating their effectiveness (percent of optimality) in allocating QoS within and across 
information spaces, their runtime, and the effect of resource contention on their effectiveness and 
runtime. During the report period, we continued producing a report documenting the results of 
these experiments. 

Designing a multi-resource multi-QoS QMS prototype. During the report period, we began 
designing the next version of the QMS components utilizing the new QoS allocation algorithms 
we described in previous reports. The new algorithms allocate QoS levels and resources to 
applications sharing resources within or across information spaces. Based on this design, we 
have begun prototyping these QMS components. 

Planning the final demonstration. During the report period, we also began planning the final 
demonstration. Two possibilities for a demonstration are one based on our previous 
demonstrations, but using the new algorithms, and one based on our simulator that we utilized to 
conduct our experiments. The former possibility would build upon our previous demonstrations 
and show some operational relevance, but would necessarily be limited in scope because of the 
size of our demonstration testbed (which would limit us to only a few information spaces 
containing a few clients). The latter possibility would support a demonstration of larger scale 
with more simulated parts, but would lack some of the operational realism of the former. Our 
current plan is to take the second approach, in order to better showcase the new capabilities of 
the QMS system. 

SAB poster. In support of the OIM review before the Scientific Advisory Board (SAB), we 
created a poster documenting our ICED and Context Aware QoS results, and our planned QED 
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activities. We delivered the draft poster to AFRL on September 18 and a revised version on 
September 25. We will present the contents of this poster at the SAB review in October. 

9.25 October 2007 

During the report period, we completed documenting the results of the experiments we 
conducted on the QoS allocation algorithms. These experiments, described in previous status 
reports, evaluated our algorithms’ effectiveness (percent of optimality) in allocating QoS within 
and across information spaces, their runtime, and the effect of resource contention on their 
effectiveness and runtime. The report that we produced was uploaded to Jiffy on October 31. 

Also during the report period, we continued designing and began implementing the next 
version of the QMS components utilizing the new QoS allocation algorithms. We re-architected 
the SRM component of the QMS to use the new algorithms, to separate the algorithmic part of 
the SRM from the other parts, and to operate in a multi-threaded, distributed configuration. The 
resulting SRM allows multi-phase allocation algorithms to be plugged in and chosen between at 
runtime. For our demonstration, we prototyped one first phase algorithm (Dynamic 
Approximation) and two second phase algorithms (Greedy Approximation and Optimizing Brute 
Force). We also developed interfaces and functionality so the SRM handles the synchronization 
of policy dissemination and temporary disconnections. We also made the main part of the SRM 
that invokes the allocation algorithm thread-safe. With these new capabilities, the SRM allocates 
QoS levels and resources to applications sharing resources within or across information spaces. 

Also during the report period, we began planning for the final review of the DynRIIC project, 
scheduled for November 15 at AFRL. We began working on a set of slides for the final 
presentation, plans for packaging and delivering the final software and the final users’ guide and 
demonstration script. 

As part of planning for the final review, we began developing the final demonstration to show 
at the final review. The demonstration will showcase the QoS allocation capabilities of the SRM 
component with the new QoS management algorithms, including the ability to allocate QoS 
levels and resources to applications within and between information spaces and to scale to large 
numbers of applications across multiple information spaces. The demonstration will also show 
the selection of algorithms, the optimality of QoS allocations, and the execution time of the 
algorithm. In addition to developing the enhanced SRM described above, we also began 
implementing a demonstration driver version of our Mission Manager component; a new version 
of our QoS internals’ display that displays the operation, effectiveness, and execution time of the 
SRM; and components to provide the QoS levels, utility, and resource usage input that the SRM 
needs. 

In conjunction with building the enhanced SRM and the demonstration software, we began 
working on an updated Users’ Guide and Demonstration Script to accompany the demonstration.  

We supported the review of the OIM projects before the Scientific Advisory Board (SAB). We 
conducted a dry run of our poster presentation early in the month. On October 15, we attended 
the SAB review and presented our poster documenting our ICED and Context Aware QoS 
results, and our planned QED activities before the SAB board. 
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We attended the Minnowbrook planning meeting from October 22-25 and led the session on 
QoS Enabled Dissemination. We prepared a set of outbrief slides documenting the discussion 
and conclusions of the session and distributed them to attendees on October 29. 

9.26 November 2007 

During the report period, we wrapped up technical efforts on this project.  
This included prototyping an enhanced version of the QMS SRM component with the new 

QoS management algorithms that we reported on in previous status reports. It also included 
developing the support software needed to build and run the SRM. We completed an updated 
version of the Users’ Guide (version 2.0) documenting the capabilities and use of the new SRM. 

We also developed the software for a demonstration of the enhanced SRM, including displays, 
configuration files, and demonstration script files. We designed a demonstration script and 
documented it in an updated version of the DynRIIC Demonstration Script document (version 
2.0). 

We packaged the new elements of the QMS software, demonstration software, and the Users’ 
Guide and Demonstration Script for a final release. This preparation included:  

 
• Packaging the software 
• Writing make files and scripts to facilitate ease of building and deploying the 

software 
• Testing the software to iron out as many bugs as possible. 
• Burning DVDs for easily handing over the released software.  
• Completing the Users’ Guide and Demonstration Script. 

 
We conducted the final review at Rome Research Center on November 15, 2007. At this 

review, we presented a summary of the major results achieved in the DynRIIC project, 
demonstrated the enhanced SRM software, and delivered the final version of the DynRIIC 
prototype software and the Users’ Guide and Demonstration Script version 2.0 document. 
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